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1. Introduction and summary

The gauge theory/gravity correspondence [1 – 3] has provided powerful clues into quantum

gravity. For example, the correspondence claims the exact identity of maximally super-

symmetric N = 4 Yang-Mills quantum field theory with gauge group SU(N) and type IIB

string theory on the negatively curved AdS5×S5 space with N units of five form flux. Thus,

we should be able to use the N = 4 super Yang-Mills theory as a definition of quantum

gravity on AdS5×S5. For interesting recent progress in this direction, see [4, 5]. The corre-

spondence is however, not yet understood well enough, for this to be possible. A detailed

understanding of the gauge theory/gravity correspondence is frustrated by the fact that

it is a weak/strong coupling duality in the ’t Hooft coupling. At weak ’t Hooft coupling

the field theory may be treated perturbatively, but the spacetime of the dual quantum

gravity is highly curved. In the opposite limit of strong ’t Hooft coupling we have to face

the difficult problem of strongly coupled quantum field theory. The dual quantum gravity

however, simplifies, because in this limit the curvature of the spacetime is small. For this

reason, most computations which can be carried out on both sides of the correspondence

(and hence clearly shed light on the correspondence) compute quantities that are protected

by symmetry - typically supersymmetry (see [6] and references therein). The number of

these tests and the agreement found is impressive. However, computing and comparing

protected quantities is not satisfying - to probe dynamical features of the correspondence it

would be nice to be able to compare quantities that are not protected by any symmetries.

This is in general, a formidable problem. In [7], the notion of an almost BPS state was

introduced. These states are systematically small deformations of states that are protected.

For this reason, for almost BPS states, it is possible to reliably extrapolate from weak to

strong coupling. A good example of almost BPS states are the BMN loops [8]. By studying

BMN loops it has been possible to probe truly stringy aspects of the gauge theory/gravity

correspondence (see [9] and references therein).

Giant gravitons, which are half-BPS states, have proved to be the source of many

valuable quantities that are accessible on both sides of the correspondence. Further, they

are very interesting from a string theory point of view, since they are good examples of

protected non perturbative objects. Giant gravitons are spherical D3 branes extended

in the sphere [10] or in the AdS space [11 – 13] of the AdS×S background. They are

(classically) stable due to the presence of the five form flux which produces a force that

exactly balances their tension. The dual description of giant gravitons is in terms of Schur

polynomials in the Higgs fields [14, 15].

Our interest in giant gravitons is related to the fact that excited giant gravitons provide

a rich source of nearly BPS states. Excitations of giant gravitons are obtained by attaching

open strings to the giant. The gauge theory operator dual to an excited sphere giant is

known and the anomalous dimension of this operator reproduces the expected open string

spectrum [16].1 This has been extended and the operators dual to an arbitrary system of

excited giant gravitons is now known [20]. The dual operators, restricted Schur polynomi-

1See [17 – 19] for further studies of non-BPS excitations that have been interpreted as open strings

attached to giant gravitons.
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als,2 beautifully reproduce the restrictions imposed on excitations of the brane system by

the Gauss law. Further, these excited giant gravitons have recently been identified as the

microstates of near-extremal black holes in AdS5×S5 [21]. Although the evidence for iden-

tifying the restricted Schur polynomials as the operators dual to excited giant gravitons is

convincing, much remains to be done. For example, we do not yet understand the detailed

mechanism allowing Chan-Paton factors, expected for strings attached to a bound state of

giant gravitons, to emerge from the super Yang-Mills theory. In this article, our goal is to

explore this issue, by providing techniques which allow the computation of the anomalous

dimensions of excited giant gravitons, to one loop. We will argue that the Chan-Paton

factors emerge from the symmetric group labels of the restricted Schur polynomials.

The computation of anomalous dimensions of operators in N = 4 super Yang-Mills

theory has progressed considerably. Much of the recent progress was sparked by a re-

markable paper of Minahan and Zarembo [22] which shows that the spectrum of one loop

anomalous dimensions of operators dual to closed string states, in a sub sector of the the-

ory, gives rise to an integrable SO(6) spin chain. This result can be generalized to include

the full set of local operators of the theory [23]. The integrable spin chain model describing

the full planar one loop spectrum of anomalous dimensions can be solved by Bethe-Ansatz

techniques [23]. Clearly, it is desirable to find a similar approach for operators dual to

open strings. A naive generalization is frustrated by the fact that, since the open string

and giant can exchange momentum, the number of sites of the open string lattice becomes

a dynamical variable.3 This was circumvented in [25] by introducing a Cuntz oscillator

chain. Restricting to the SU(2) sector, the spin chain is obtained by mapping one of the

matrices, say Z, into a spin up and the other, say Y , into a spin down. In contrast to this,

the Cuntz chain uses the Y s to set up a lattice which is populated by the Zs. Thus the

number of sites in the Cuntz chain is fixed.

The power of the spin chain goes beyond the computation of anomalous dimensions.

Indeed, the low energy description of the spin chain relevant for closed string states ap-

pearing on the field theory side matches perfectly with the low energy limit of the string

action in AdS5×S5 [26]. This is an important result because it shows how a string action

can emerge from large N gauge theory. For the open string, the coherent state expectation

value of the Cuntz chain Hamiltonian reproduces the open string action for an open string

attached to a sphere giant in AdS5×S5 [25, 17], for an open string attached to an AdS

giant in AdS5×S5 [27] and for an open string attached to a sphere giant in a deformed

AdS5×S5 background [28]. Recently [29], the worldsheet theory of an open string attached

to a maximal giant has been studied. Evidence that the system is integrable at two loops

has been obtained.

The fact that the open string can exchange momentum with the giant is reflected in

the fact that there are sources and sinks (at the endpoints of the string) for the particles

on the chain. The structure of these boundary interactions is complicated: since the

brane can exchange momentum with the string, the brane will in general be deformed

2We review the definition of the restricted Schur polynomial in appendix E.
3An exception to this is an open string attached to a maximal giant graviton [24].
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by these boundary interactions. The goal of this article is to determine this Cuntz chain

Hamiltonian for multiple strings attached to an arbitrary system of giant gravitons. In

particular, this entails accounting for back reaction on the giant graviton. To compute the

Cuntz chain Hamiltonian, we need the two point functions of restricted Schur polynomials.

It is an involved combinatoric task to compute the two point functions of restricted Schur

polynomials. The required technology to compute these correlators, in the free field limit,

has recently been developed in [30].4 This was then extended to one loop, for operators

dual to giants with a single string attached [32]. In this article, we extend the existing

technology, allowing the one loop computation of correlators dual to giant graviton systems

with an arbitrary number of strings attached. In the remainder of this introduction, we

will establish notation and give a sketch of the technology we develop.

To make our discussion concrete, we mostly consider the specific example of two strings

attached to a bound state of two sphere giants.5 Note however, that most of the formulas

we derive (and certainly the techniques we develop) are applicable to the general problem.

Both the strings and the branes that we consider are distinguishable. In this case there are

a total of six possible states. For a bound state of two sphere giant gravitons, we need to

consider restricted Schur polynomials labeled by Young diagrams with two columns each

with O(N) boxes. Denote the number of boxes in the first column by b0+b1 and the number

of boxes in the second column by b0. It is natural to interpret the number of boxes in each

column as the momentum of each giant. We can use the state operator correspondence (see

appendices C.5 and D for further discussion) to associate a Cuntz chain state with each

restricted Schur polynomial. The Cuntz chain states have six labels in total: the first two

labels are b0 and b1 which determine the momenta of the two giants; the next two labels

are the branes on which the endpoints of string one are attached and the final two labels

are the branes on which the endpoints of string two are attached. We label the strings by

‘1’ and ‘2’. The brane corresponding to column 1 of the Young diagram is labeled ‘b’ (for

big brane) and the brane corresponding to column 2 of the Young diagram is labeled ‘l’

(for little brane). Since the second column of a Young diagram can never contain more

boxes that the first column, and since the radius of the giant graviton is determined by

the square root of its angular momentum, these are accurate labels. Consider a state with

string 1 on big brane and string 2 on little brane. The restricted Schur polynomial (written

using the graphical notation of [30, 32]) together with the corresponding Cuntz chain state

are (in this case, b0 = 3 and b1 = 4)

2

1 ←→ |3, 4, bb, ll〉.

We will call states with strings stretching between branes “stretched string states”. When

4For some earlier related work, see [31].
5In appendix F we consider a boundstate of three sphere giants with two open strings attached.
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labeling the Cuntz chain state corresponding to a stretched string state, we will write the

end point label corresponding to the upper index first. Thus,

1
2

2
1 ←→ |3, 4, lb, bl〉.

The remaing four states are

1

2 ←→ |3, 4, ll, bb〉

2
1

1
2 ←→ |3, 4, bl, lb〉,

2
1

←→ |2, 6, ll, ll〉
2
1 ←→ |4, 2, bb, bb〉.

The construction of the operators dual to excitations described by strings stretching be-

tween the branes requires the construction of an “intertwiner” [30]. One of the results of

the present article, is to provide a general construction of the intertwiner. This construc-

tion is given in appendix A. In the notation of [30], we assume that when the restricted

Schur polynomial is to be reduced, string 1 is removed first and string 2 second. This

implies that, when using the graphical notation, removing the box occupied by string 1

first will always leave a valid Young diagram. This choice is arbitrary, but useful for ex-

plicit computation. Once we have the form of the Hamiltonian, we can always change to a

“physical basis”. To obtain operators dual to giant gravitons, we take b0 to be O(N) and

b1 to be O(1). We want to compute the matrix of anomalous dimensions to one loop and at

large N . To compute this matrix, we need to compute the two point functions of restricted

Schur polynomials. This is a hard problem: since the number of fields in the giant graviton

is O(N), huge combinatoric factors pile up as the coefficient of non-planar diagrams and

the usual the planar approximation fails. We need to contract all of the fields in the giant

gravitons exactly. The two open strings are described by the words W (1) and W (2). The

six Higgs fields φi i = 1, . . . , 6, of the N = 4 super Yang-Mills theory can be grouped into

the following complex combinations

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6.
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The giant gravitons are built out of the Z field; the open string words out of the Z and

Y fields. Thus, the open strings carry a component of angular momentum on the S3 that

the giant wraps, as well a component parallel to the giant’s angular momentum. We will

normalize things so that the action of N = 4 super Yang-Mills theory on R × S3 is (we

consider the Lorentzian theory and have set the radius of the S3 to 1)

S =
N

4πλ

∫

dt

∫

S3

dΩ3

2π2

(

1

2
(Dφi)(Dφi) +

1

4

([

φi, φj
])2 − 1

2
φiφi + . . .

)

, (1.1)

With these conventions,

〈Z†
ij(t)Zkl(t)〉 =

4πλ

N
δilδjk = 〈Y †

ij(t)Ykl(t)〉, (1.2)

The open string words can be labelled as

(W ({n1, n2, . . . , nL−1}))ij = (Y Zn1Y Zn2Y · · ·Y ZnL−1Y )ij , (1.3)

where {n1, n2, . . . , nL−1} are the Cuntz lattice occupation numbers. The giant is built out

of Zs; the first and last letters of the open string word W are not Zs. We will always use

L to denote the number of Y fields in the open string word and J = n1 + n2 + · · ·+ nL−1

to denote the number of Z fields in the open string word. The number of fields in each

word is J + L ≈ L in the case that J ≪ L which we will assume in this article. For the

words W (1),W (2) to be dual to open strings, we need to take L ∼ O(
√
N). We do not

know how to contract the open strings words exactly; when contracting the open string

words, only the planar diagrams are summed. To suppress the non-planar contributions

we take L2

N ≪ 1. To do this we consider a double scaling limit in which the first limit

takes N → ∞ holding L2

N fixed and the second limit takes the effective genus counting

parameter L2

N to zero. Taking the limits in this way corresponds, in the dual string theory,

to taking the string coupling to zero, in the string theory constructed in a fixed giant

graviton background. Since the two strings are distinguishable they are represented by

distinct words and hence, in the large N limit, we have

〈W (i)(W (j))†〉 ∝ δij .

When computing a correlator of two restricted Schur polynomials, the fields belonging to

the giants in the two systems of excited giant gravitons are contracted amongst each other,

the fields in the first open string of each are contracted amongst each other and the fields

in the second open string are contracted amongst each other. We drop the contributions

coming from contractions between Zs in the open strings and Zs associated to the brane

system, as well as contractions between Zs in different open string words. When computing

two point functions in free field theory, if the number of boxes in the representation R is

less than6 O(N2) and the numbers of Z’s in the open string is O(1), the contractions

between any Zs in the open string and the rest of the operator are suppressed in the large

6When the number of operators in the Young diagram is O(N2), the operator is dual to an LLM

geometry [33].
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N limit [34]. Contractions between Zs in different open string words are non planar and

are hence subleading (clearly there are no large combinatoric factors that modify this).

An important parameter of our excited giant graviton system is N−b0. This parameter

can scale as O(N), O(
√
N) or O(1). In section 2, we will see that when N − b0 is O(1)

the sphere giant boundary interaction is O( 1
N ), when N − b0 is O(

√
N) the boundary

interaction is O( 1√
N

) and when N − b0 is O(N), the boundary interaction is O(1). Since

we want to explore the dynamics arising from the boundary interaction, we will assume

that N − b0 is O(N).

The subspace of states reached by attaching two open strings to a giant graviton bound-

state system is dynamically decoupled (from subspaces obtained by attaching a different

number of open strings) at large N . It is possible to move out of this subspace by the pro-

cess in which the word W “fragments” thereby allowing Y s to populate more than a single

box in R. In the dual string theory this corresponds to a splitting of the original string into

smaller strings, which are still attached to the giant. This process was considered in [30]

and from that result we know that it does not contribute in the large N limit. One could

also consider the process in which the open string detaches from the brane boundstate and

is emitted as a closed string state, so that it no longer occupies any box in R. This process

(decay of the excited giant boundstate by gravitational radiation) also does not contribute

in the large N limit [16, 30].

Since the giant boundstate and the open string can exchange momentum, the value

of J is not a parameter that we can choose, but rather, it is determined by the dynamics

of the problem. Cases in which J becomes large correspond to the situation in which a

lot of momentum is transferred from the giant to the open string, presumably signaling an

instability. See [17] for a good physical discussion of this instability. In cases where J is

large, back reaction is important and the approximations we are employing are no longer

valid. This will happen when J becomes O(
√
N) since the assumption that we can drop

non-planar contributions when contracting the open string words breaks down. Essentially

this is because as more and more Zs hop onto the open string, it is starting to grow into a

state which is eventually best described as a giant graviton itself. One can also no longer

neglect the contractions between any Zs in the open string and the rest of the operator,

presumably because the composite system no longer looks like a string plus giant (which can

be separated nicely) but rather, it starts to look like one large deformed threebrane. Thus,

the fact that our approximation breaks down has a straight forward interpretation: We

have set up our description by assuming that the operator we study is dual to a threebrane

with an open string attached. This implies that our operator can be decomposed into a

“threebrane piece” and a “string piece”. These two pieces are treated very differently:

when contracting the threebrane piece, all contractions are summed; when contracting the

string piece, only planar contractions are summed. Contractions between the two pieces

are dropped. When a large number of Zs hop onto the open string our operator is simply

not dual to a state that looks like a threebrane with an open string attached and our

approximations are not valid. We are not claiming that this operator can not be studied

using large N techniques - it may still be possible to set up a systematic 1/N expansion.

We are claiming that the diagrams we have summed do not give this approximation.

– 7 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
9

It is useful to decompose the potential for the scalars into D terms and F terms. The ad-

vantage of this decomposition is that it is known that at one loop, the D term contributions

cancel with the gauge boson exchange and the scalar self energies [35]. Consequently we

will only consider the planar interactions arising from the F term. The F term interaction

preserves the number of Y ’s (the lattice is not dynamical) and allows impurities (the Zs)

to hop between neighboring sites. The bulk interactions are described by the Hamiltonian

Hbulk = 2λ

L
∑

l=1

â†l âl − λ
L−1
∑

l=1

(

â†l âl+1 + âlâ
†
l+1

)

, (1.4)

where

âiâ
†
i = I, â†i âi = I − |0〉〈0|. (1.5)

The interested reader is referred to [17] for the derivation of this result. To obtain the full

Hamiltonian, we need to include the boundary interactions arising from the string/brane

system interaction. This interaction introduces sources and sinks for the impurities at the

boundaries of the lattice. The boundary interaction allows Zs to hop from the string onto

the giant, or from the giant onto the string. Since the number of Zs gives the angular

momentum of the system in the plane that the giant is orbiting in, the boundary interac-

tion allows the string and the brane to exchange angular momentum. We can classify the

different types of boundary interaction depending on whether momentum flows from the

string to the brane or from the brane to the string. Consider the interaction that allows a

Z to hop from the first or last site of either string onto the giant. In this process the string

loses momentum to the giant graviton. We call this a “hop off” process because a Z has

hopped off the string. The opposite process in which a Z hops off the brane and onto the

string is called a “hop on” process. In the “hop on” process the giant loses momentum to

the string. In addition to these momentum exchanging processes, there is also a boundary

interaction in which a Z belonging to the giant “kisses” the first (or last) Y in the open

string word so that no momentum is exchanged. We call this the kissing interaction.

In appendix C we will derive a set of identities that allow us to compute the term in

the Hamiltonian describing the “hop off” process. These identities make extensive use of

the technology for computing restricted characters which is developed in appendix B. We

will now explain what we mean by a restricted character. Let R be an irrep of Sn and let

R1 be an irrep of Sn−m with 0 < m < n. If we restrict ourselves to elements σ ∈ Sn−m,

then ΓR(σ) will, in general, subduce a number of irreps of Sn−m. One of these irreps is R1.

A restricted character χR,R1(σ) is obtained by tracing the matrix representing σ in irrep R,

ΓR(σ), over the R1 subspace. If σ ∈ Sn−m this simply gives the character of σ in irrep R1.

Our technology allows the computation of χR,R1(σ) even when σ /∈ Sn−m, in which case

χR,R1(σ) does not have an obvious group theory interpretation. The basic idea we exploit

in constructing the “hop off” process is simple to state: In a string-giant system, whenever

a Z field hops past the borders of the open string word W , the resulting restricted Schur

polynomial decomposes into a sum of two types of systems, one is a giant with a closed string

and another is a string-giant system where the giant is now bigger. In the large N limit

only this second type needs to be considered. Our identities express this decomposition.

– 8 –
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Since the Hamiltonian must be Hermitian, we can obtain the “hop on” term by dagger-

ing the “hop off” term. Finally, we obtain the momentum conserving boundary interaction

by expressing the kiss as a hop on followed by a hop off. This determines the complete Cuntz

oscillator chain Hamiltonian needed for a one loop computation of the anomalous dimen-

sions of operators dual to excited giant graviton bound states. This derivation of the Cuntz

chain Hamiltonian, which is the main technical result of this article, is given in section 2.

The resulting Hamiltonian clearly reflects the worldsheet structure of the open strings

that are interacting. This explains how the Chan-Paton factors associated with strings in

a multi-brane system dynamically emerge from Yang-Mills theory: they emerge from the

symmetric group labels of the restricted Schur polynomials. Our Hamiltonian treats string

1 and string 2 differently. This is not at all surprising, since when we built our operator we

treated the two strings differently. In section 3 we describe a new “physical basis” singled

out by the requirement that the two strings enter on an equal footing. In section 4 we

present our conclusions.

Strings stretching between giants in AdS can be realized as solutions to the Born-Infeld

action describing the world volume dynamics of these branes [19]. In this work the Gauss

law is enforced by the construction of consistent solutions to the equations of motion

on a compact space. In the work [20] the one loop anomalous dimension of operators

representing a string attached to a two brane bound state was considered. One of the

branes was taken to be a maximal giant to simplify the computation. For two coincident

branes, the one-loop anomalous dimension for an open string is twice the answer for a single

brane. This is the first, to the best of our knowledge, hint of the dynamical emergence

of Chan-Paton factors for open strings on coincident branes. The demonstration of [20]

identifies the extra factor of 2 with the trace over the indices of the enhanced gauge group

associated to coincident branes. Our demonstration proves this identification: we can follow

the Chan-Paton indices in the tree level transitions of two open strings. Further, using the

technology we develop, it is straight forward (but technically involved) to generalize this

result to a bound state of m branes, where we expect a U(m) gauge theory to emerge. As

an example, in appendix F we consider a boundstate of three sphere giants. In this case,

a U(3) gauge theory emerges.

2. Cuntz chain hamiltonian

In this section we will derive the form of the terms in the Hamiltonian describing the

string boundary interactions. This will allow us to compute the complete Cuntz chain

Hamiltonian, since the bulk Hamiltonian has already been given in (1.4).

2.1 Hop off interaction

We start by deriving the hop off interaction. The F term vertex allows a Z and a Y to

change position within a word. The hopping interaction corresponds to the situation in

which a Z hops past the Y marking the end point of the string, i.e. a Z hops off the string

– 9 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
9

and onto the giant. Concretely, when acting on either open string, this hop takes

W ({n1, n2, . . . , nL−1}) → ZW ({n1 − 1, n2, . . . , nL−1}) or

W ({n1, n2, . . . , nL−1}) → W ({n1, n2, . . . , nL−1 − 1})Z.
To determine the corresponding term in the interaction Hamiltonian, we need to be able

to express objects like χ
(2)
R,R′′(Z,ZW (1),W (2)) in terms of χ

(2)
S,S′′(Z,W (1),W (2)) where S is

a Young diagram with one more box than R.7 This is easily achieved by inverting the

identities derived in appendix C. To get the hop off interaction in the Hamiltonian, we

rewrite the identities in terms of normalized Cuntz chain states.

+1 → 1 hop off interaction. This term in the Hamiltonian describes the hop off

process in which a Z hops out of the first site of string 1. We write +1 → 1 to indicate

that the string before the hop has one extra Z in its first site.

H+1→1



















|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 2, b1 + 2, ll, ll〉
|b0, b1 − 2, bb, bb〉



















= −λ
√

1− b0
N
M1



















|b0 − 1, b1 + 1, bb, ll〉
|b0, b1 − 1, ll, bb〉
|b0 − 1, b1 + 1, bl, lb〉
|b0, b1 − 1, lb, bl〉
|b0 − 1, b1 + 1, ll, ll〉
|b0, b1 − 1, bb, bb〉



















, (2.1)

where

M1 =



















−(b1)
2
1

1
b1(b1+1)2 0 (b1)0

b1+1
(b1)1
b1+1 − (b1)1

b1(b1+1)

− 1
(b1+2)(b1+1)2 −(b1)

2
1 − (b1)2

b1+1 0 − (b1)1
(b1+1)(b1+2) − (b1)1

b1+1

− (b1)1
(b1+1)(b1+2)

(b1)1
b1+1 −(b1)1(b1)2 0 − b1

(b1+1)2
1

(b1+1)2

− (b1)1
b1+1 − (b1)1

b1(b1+1) 0 −(b1)0(b1)1
1

(b1+1)2
b1+2

(b1+1)2

− (b1)2
b1+1 0 1

b1+2 0 −(b1)1(b1)2 0

0 (b1)0
b1+1 0 − 1

b1
0 −(b1)0(b1)1



















,

and

(b1)n =

√
b1 + n− 1

√
b1 + n+ 1

b1 + n
.

The term in the Hamiltonian describing the process in which the Z hops out of the last

site of string 1 is described by swapping the labels of the endpoints of the open strings.

Concretely, it is given by

H1+→1



















|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, bl, lb〉
|b0 − 2, b1 + 2, ll, ll〉
|b0, b1 − 2, bb, bb〉



















= −λ
√

1− b0
N
M1



















|b0 − 1, b1 + 1, bb, ll〉
|b0, b1 − 1, ll, bb〉
|b0 − 1, b1 + 1, lb, bl〉
|b0, b1 − 1, bl, lb〉
|b0 − 1, b1 + 1, ll, ll〉
|b0, b1 − 1, bb, bb〉



















, (2.2)

where M1 is the matrix given above. We write 1+ → 1 to indicate that the string before

the hop has one extra Z in its last site.

7The number of primes on the label of the restricted Schur polynomial indicates how many boxes are

dropped, i.e. R
′′ is obtained by dropping two boxes from R.
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+2 → 2 hop off interaction. This term in the Hamiltonian describes the hop off

process in which a Z hops out of the first site of string 2.

H+2→2



















|b0 − 2, b1 + 1, bb, ll〉
|b0 − 1, b1 − 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 1, b1 − 1, lb, bl〉
|b0 − 2, b1 + 1, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉



















= −λ
√

1− b0
N
M2



















|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, ll, ll〉
|b0 − 1, b1, bb, bb〉



















, (2.3)

where

M2 =



















−(b1)
2
1 − 1

(b1+2)(b1+1)2 −
(b1)1

(b1+1)(b1+2) − (b1)1
b1+1 0 − (b1)2

b1+1
1

b1(b1+1)2 −(b1)
2
1

(b1)1
b1+1 − (b1)1

(b1+1)b1

(b1)0
b1+1 0

0 − (b1)2
b1+1 −(b1)1(b1)2 0 0 1

b1+2
(b1)0
b1+1 0 0 −(b1)0(b1)1 − 1

b1
0

− (b1)1
b1(b1+1) − (b1)1

b1+1
1

(b1+1)2
b1+2

(b1+1)2 −(b1)1(b1)0 0
(b1)1
b1+1 − (b1)1

(b1+1)(b1+2) − b1

(b1+1)2
1

(b1+1)2 0 −(b1)2(b1)1



















.

Notice that these interactions (as is the case for all of the boundary interactions) are highly

suppressed for a maximal giant [24]. The term in the Hamiltonian describing the process

in which the Z hops out of the last site of string 2 is described by swapping the labels of

the endpoints of the open strings.

The function (b1)n also appears in the Hamiltonian relevant for a single string attached

to a giant [32]. Notice that (b1)n vanishes when b1 = 1−n, but tends to 1 very rapidly as b1
is increased from this value. The diagonal terms in the Hamiltonian with a (b1)1 factor will

thus vanish when b1 = 0. The radius of each giant is determined by their momentum. Since

b1 is the difference in momentum of the two giants, b1 = 0 corresponds to coincident giants.

Thus, (b1)n is switching off short distance interactions. The hop off Hamiltonian does not

generate illegal Young diagrams from legal ones precisely because these interactions are

switched off.

It may seem puzzling that the boundary interaction has the universal strength
√

1− b0
N

regardless of which end the Z peels off. Indeed, any local boundary interaction should only

know about the boundary which is participating. Since the string end points are on branes

of different sizes, one would expect two different strengths for the two endpoints. This

universal strength is an artifact of the limit we consider. We take b0 to be O(N) and b1

to be O(1). The strength
√

1− b0
N arises from the normalization of the Cuntz oscillator

states for the string endpoint attached to the smaller giant graviton (see appendix D for

these normalizations). Similarly, the strength
√

1− b0+b1
N arises from the normalization of

the Cuntz oscillator states for the string endpoint attached to the larger giant graviton. In

the limit we consider
√

1− b0 + b1
N

−
√

1− b0
N

= O
( 1

N

)

.

Physically, taking b0 = O(N) and b1 = O(1) implies that the two branes are very nearly

coincident.

– 11 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
9

Finally, note that the structure of the hop on and hop off interactions, clearly reflect

the fact that the open strings attached to the giants are orientable.

2.2 Hop on interaction

Since N = 4 super Yang-Mills theory is a unitary conformal field theory, we know that

the spectrum of anomalous dimensions of the theory is real. This implies that the energy

spectrum of our Cuntz chain Hamiltonian must be real and hence the Hamiltonian must be

Hermitian. Thus, the hop on term in the Hamiltonian is given by the Hermitian conjugate

of the hop off term.

To give an example, we will now derive the term in the Hamiltonian describing the

process in which a Z from the brane hops into the first site of string 1. Let |ψ〉 denote the

state with a brane of momentum Pbrane = P and a string of momentum Pstring = p and |φ〉
denote the state with Pbrane = P + 1 and Pstring = p− 1. Then,

H+1→1|ψ〉 = −λ
√

1− b0
N
M1|φ〉, (2.4)

and

〈φ′|H+1→1|ψ〉 = −λ
√

1− b0
N
〈φ′|M1|φ〉 = −λ

√

1− b0
N

(M1)φ′φ.

Daggering we find (keep in mind that M1 is real)

〈ψ|H1→+1|φ′〉 = (〈φ′|H+1→1|ψ〉)†

= −λ
√

1− b0
N
〈φ|(M1)

T |φ′〉

= −λ
√

1− b0
N

(

(M1)
T
)

φφ′
.

Thus we obtain

H1→+1|φ〉 = −λ
√

1− b0
N
N1|ψ〉, (2.5)

with N1 = (M1)
T .

2.3 Kissing interaction

The kissing interaction corresponds to the Feynman diagram shown on the left in figure 1.

Notice that the number of Z fields in the giant is unchanged by this process so that the

string and brane do not exchange momentum by this process. As far as the combinatorics

goes, we can model the kissing interaction as a hop on (the string) followed by a hop off.

We know both the hop on and hop off terms so the kissing interaction follows. This is

illustrated by the Feynman diagram shown on the right in figure 1. The kissing interaction

must be included for both endpoints of both strings.

A straight forward computation easily gives

Hkissing = λ

(

1− b0
N

)

1, (2.6)
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Figure 1: The Feynman diagram on the left shows the kissing interaction. The white ribbons are

Z fields, the black ribbons are Y fields. The interacting black ribbon shown marks the beginning

of the string; there are 3 Zs in the first site of the string. The Feynman diagram on the right shows

a hop on interaction followed by a hop off interaction. If you shrink the composite hop on/hop off

interaction to a point, you recover the kissing interaction.

for each endpoint of either string. In this formula 1 is the identity operator.

The fact that the kissing interaction comes out proportional to the identity operator

is a non-trivial check of our hop on and hop off interactions. Indeed, the contraction of

the F term vertex which leads to the kissing interaction removes an adjacent Z and Y

and then replaces them in the same order. Thus, the kissing interaction had to come out

proportional to the identity. The careful reader may worry that this is not in fact true -

indeed, the restricted Schur polynomial includes terms in which the open string word is

traced and terms in which the two open string words are multiplied. For these terms there

is no Z next to the word to “do the kissing”. Precisely these terms were considered in

appendix C.5. They do not contribute at large N .

2.4 Validity of the Cuntz chain hamiltonian

We have made a number of approximations. When contracting the open string words,

only the planar diagrams have been summed. The non-planar contributions can only be

neglected if L2

N ≪ 1. Contributions coming from contractions between Zs in the open

strings and Zs associated to the brane system have been dropped. When computing two

point functions in free field theory, if the number of boxes in the representation R is less

than O(N2) and the numbers of Z’s in the open string is O(1), the contractions between any

Zs in the open string and the rest of the operator are suppressed in the large N limit [34].

Contractions between Zs in different open string words have been dropped because they are

non planar and are hence subleading. No large combinatoric factors modify this. Finally,

when J is large, back reaction is important and the approximations we are employing are

no longer valid. When J becomes O(
√
N) the assumption that we can drop non-planar

contributions when contracting the open string words breaks down.
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3. Interpretation

The operators we are studying are dual to giant gravitons with open strings attached. Since

the giant gravitons have finite volume, the Gauss Law implies that the total charge on each

giant must vanish - there must be the same number of strings leaving each brane as there are

arriving on each brane. These operators do indeed satisfy these non-trivial constraints [20],

providing convincing evidence for the proposed duality. The low energy dynamics of the

open strings attached to the giant gravitons is a Yang-Mills theory. This new emergent

3 + 1 dimensional Yang-Mills theory is not described as a local field theory on the S3 on

which the original Yang-Mills theory is defined - it is local on a new space, the world volume

of the giant gravitons [20, 36]. This new space emerges from the matrix degrees of freedom

participating in the Yang-Mills theory. Reconstructing this emergent gauge theory may

provide a simpler toy model that will give us important clues into reconstructing the full

AdS5×S5 quantum gravity. In this section, our goal is to make contact with this emergent

Yang-Mills dynamics.

3.1 Dynamical emergence of Chan-Paton factors

Return to the H+1→1 hop off interaction obtained in section 2.1. Recall that this corre-

sponds to the interaction in which a Z hops out of the first site of string 1. If we expand

the matrix M1 for large b1, we find

M1 =

∞
∑

n=0

M1(n)b−n
1 . (3.1)

The leading order M1(0) is simply −1 with 1 the 6 × 6 identity matrix. The Z simply

hops off the string and onto the brane without much rearranging of the system. This is

the dominant process. Next, consider the term of order b−1
1 . It is simple to compute

M1(1) =



















0 0 0 1 1 0

0 0 −1 0 0 −1

0 1 0 0 −1 0

−1 0 0 0 0 1

−1 0 1 0 0 0

0 1 0 −1 0 0



















. (3.2)

The radius of the giant graviton Rg is related to its momentum P by Rg =
√

P
N . The giant

orbits with a radius R =
√

1−R2
g. For the two giants in the bound state we are considering

we have P1 = b0 and P2 = b0 + b1. Using the fact that b0 = O(N) and b1 = O(1) it is

simple to verify that both the difference in the radii of the two giants and the difference in

the radii of their orbits is proportional to b1. Thus, a b−1
1 dependence indicates a potential

with an inverse distance dependence which is the correct dependence for massless particles

moving in 3 + 1 dimensions. In figure 2 we have represented the transitions implied by

M1(1) graphically. Transitions between any two adjacent Young diagrams are allowed.
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Figure 2: The order b−1
1 terms in the hop off interaction. This interaction allows a transition

between the operators described by any two adjacent Young diagrams. The figures between the

Young diagram show the open string diagram relevant for the clockwise transition. The kets are

associated to the open string states before the transition; the bras to the states after the transition.

The end point labels ‘b’ and ‘l’ are for big brane and little brane.

As an example, consider the transition

1

2 →

2
1

1
2 .

The upper label of string 1 has moved. In all of the transitions shown, the upper index of

string 1 always moves, so that it is natural to associate the upper index of string 1 with the

first site of string one, and to look for an interpretation of this interaction in terms of open

string processes that involve the upper index of string 1. The figures between the Young

diagram show that there is indeed a natural interpretation for these transitions. It is clear

that our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for open strings
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propagating on multiple branes arise dynamically. Drawing all possible ribbon diagrams

correctly accounts for both M1(0) and M1(1).

3.2 Physical basis

Although the interpretation of the b−1
1 terms is encouraging, there are extra higher order

corrections (M1(2)b
−2
1 , M1(3)b

−3
1 and higher orders) that do not seem to have a natural

open string interpretation. In addition to this, the interaction we have obtained depends

on the open string words describing each open string, the Young diagram describing the

brane bound state system as well as the order in which the strings were attached. This

dependence on the order in which the strings are attached is not physically sensible.

It is natural to expect that the resolution to these two puzzles is connected. Recall that

when constructing the restricted Schur polynomial we have assumed that when computing

reductions, string 1 is removed first and string 2 second. This arbitrary choice defines a

basis for the Cuntz oscillator chain. We interpret the unphysical features of our interactions,

described in the previous paragraph, as reflecting a property of the basis it is written in

and not as an inherent problem with the interaction. In this section we will define a

new physical basis, singled out by the requirement that the boundary interaction does not

depend on the order in which the open strings are attached.

A few comments are in order. A basis for the 1
2 BPS states (giants with no open

strings attached) is provided by the taking traces of Z or by taking subdeterminants or

by the Schur polynomials. These are three perfectly acceptable bases, since using any

single one of these bases we can generate, by taking linear combinations of the elements of

the basis considered, a member from every 1
2 BPS multiplet [14]. From a physical point

of view, these different bases are not on an equal footing: the Schur polynomial is the

most useful. Indeed, the Schur polynomials diagonalize the matrix of two point correlators

(Zamolodchikov metric) so that they can be put into correspondence with the (orthogonal)

states of a Fock space. In the same way, the basis for excited giants gravitons we have been

considering is a perfectly acceptable basis. However, it is the operators in the physical

basis (defined below) that have a good physical interpretation.

Denote our two strings by string A and string B. The state obtained by attaching

string A first will be denoted by |b0, b1, xAyA, xByB〉, where xAyA are the endpoints of

string A and xByB are the endpoints of string B. The state obtained by attaching string

B first will be denoted by |b0, b1, xByB, xAyA〉〉. In each subspace of sharp giant graviton

momentum (definite b0 and b1), we can write the following relation between these two sets

of states


















|b0, b1, bb, ll〉
|b0, b1, ll, bb〉
|b0, b1, bl, lb〉
|b0, b1, lb, bl〉
|b0, b1, ll, ll〉
|b0, b1, bb, bb〉



















= PT



















|b0, b1, bb, ll〉〉
|b0, b1, ll, bb〉〉
|b0, b1, bl, lb〉〉
|b0, b1, lb, bl〉〉
|b0, b1, ll, ll〉〉
|b0, b1, bb, bb〉〉



















, (3.3)
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where

P =



















0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















and

T =

























(

1− 1
(b1+1)2

)

1
(b1+1)2 − 1

(b1+1)

√

1− 1
(b1+1)2 − 1

(b1+1)

√

1− 1
(b1+1)2 0 0

1
(b1+1)2

(

1− 1
(b1+1)2

)

1
(b1+1)

√

1− 1
(b1+1)2

1
(b1+1)

√

1− 1
(b1+1)2 0 0

1
(b1+1)

√

1− 1
(b1+1)2 − 1

(b1+1)

√

1− 1
(b1+1)2

(

1− 1
(b1+1)2

)

− 1
(b1+1)2 0 0

1
(b1+1)

√

1− 1
(b1+1)2 − 1

(b1+1)

√

1− 1
(b1+1)2 − 1

(b1+1)2

(

1− 1
(b1+1)2

)

0 0

0 0 0 0 1 0

0 0 0 0 0 1

























.

The matrix T is determined by the subgroup swap rule of [30]. It is satisfying that

PT × PT = 1. It is straight forward to check that

H+1→1 = A2→1 PT H+2→2A1→2 PT, (3.4)

where



















|b0 − 2, b1 + 2, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 2, b1 + 2, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 2, b1 + 2, ll, ll〉
|b0 − 1, b1, bb, bb〉



















= A2→1



















|b0 − 1, b1, bb, ll〉
|b0 − 1, b1, ll, bb〉
|b0 − 1, b1, bl, lb〉
|b0 − 1, b1, lb, bl〉
|b0 − 1, b1, ll, ll〉
|b0 − 1, b1, bb, bb〉



















, and



















|b0 − 2, b1 + 1, bb, ll〉
|b0 − 1, b1 − 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 1, b1 − 1, lb, bl〉
|b0 − 2, b1 + 1, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉



















= A1→2



















|b0 − 2, b1 + 1, bb, ll〉
|b0 − 2, b1 + 1, ll, bb〉
|b0 − 2, b1 + 1, bl, lb〉
|b0 − 2, b1 + 1, lb, bl〉
|b0 − 3, b1 + 3, ll, ll〉
|b0 − 1, b1 − 1, bb, bb〉



















.

Denote the similarity transformation which takes us to the physical basis by S. In this

basis, we denote H+1→1 by Ĥ+1→1 and H+2→2 by Ĥ+2→2. Clearly

Ĥ+1→1 = SH+1→1S
−1, Ĥ+2→2 = SH+2→2S

−1.

The transformation S is now determined by the requirement

Ĥ+1→1 = PĤ+2→2P. (3.5)

We have not yet been able to solve this equation for S. Due to the presence of A1→2 and

A2→1 in the relation between H+1→1 and H+2→2, it seems that S must mix subspaces of
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different giant momenta (b0, b1). In this case the physical basis will not have sharp giant

momentum and hence the resulting states will not have a definite radius. This is not too

surprising: the open strings will pull “dimples” out of the giant graviton’s world volume

so that the giant with an open string attached does not have a definite radius. We leave

the interesting question of determining the transformation S for the future.

4. Discussion

A bound state of giant gravitons can be excited by attaching open strings. The problem of

computing the anomalous dimensions of these operators can be replaced with the problem

of diagonalizing a Cuntz oscillator Hamiltonian. In this article we have developed the

technology needed to construct this Cuntz oscillator Hamiltonian to one loop. Firstly, we

have given an algorithmic construction of the operators dual to excitations described by

open strings which stretch between the branes. This involved giving an explicit construction

of the intertwiner which is used to construct the relevant restricted Schur polynomial.

Secondly, we have developed methods that allow an efficient evaluation of any restricted

character. Our method expresses the restricted character graphically as a sum of strand

diagrams. Finally, we have explained how to derive the boundary interaction terms from

identities satisfied by the restricted Schur polynomials. Since the excited giant graviton

operators are small excitations of BPS states, we expect that our results can be extrapolated

to strong coupling and hence can be compared with results from the dual string theory.

The form of our Cuntz oscillator Hamiltonian provides evidence that the excitations of the

giant gravitons have the detailed interactions of an emergent gauge theory. In particular,

we have demonstrated the dynamical emergence of the Chan-Paton factors of the open

strings. We have also started to clarify the dictionary relating the states of the Cuntz

oscillator chain to the states of string field theory on D-branes in AdS5×S5. Although we

have mainly considered a bound state of two sphere giants with two open strings attached,

our methods are applicable to an arbitrary bound state of giant gravitons with any number

of open strings attached.

Our result is a generalization of the spin chains considered so far in the literature:

usually the spin chain gives a description of closed strings. Our Cuntz oscillator describes

the dynamics of an open string interacting with a giant graviton. Both the state of the string

(described by the Cuntz chain occupation numbers) and the state of the giant graviton (the

shape of the Young diagram) are dynamical in our approach.

It is worth emphasizing that the new emergent gauge symmetry is distinct from the

original gauge symmetry of the theory [20]. The excited giant graviton operators [20] are

obtained by taking a trace over the indices of the symmetric group matrix ΓR(σ) appearing

in the sum
1

(n− k)!
∑

σ∈Sn

ΓR(σ)Tr (σZ⊗n−kW (1) · · ·W (k)), where

Tr (σZ⊗n−kW (1) · · ·W (k)) = Zi1
iσ(1)

Zi2
iσ(2)
· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

.

The color indices of the original super Yang-Mills theory are all traced: every term in the

above sum is a color singlet with respect to the gauge symmetry of the original Yang-Mills
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theory. The color indices of the new gauge theory arise from the labeling of the partial

trace over ΓR(σ). In some sense we are “substituting” symmetric group indices for the

original gauge theory indices. We call this mechanism “color substitution”.

There are a number of directions in which this work can be extended. For Young

diagrams with m columns we expect an emergent Yang-Mills theory with gauge group

U(m). It would be nice to repeat the calculations we performed here in that setting.8

Another interesting calculation would involve studying the dynamics of two giant gravitons

with strings stretched between them. In general, the boundary terms will certainly have

different values at each boundary (as anticipated in [17]) in which case there will be a net

flow of Zs from one brane to the other. This flow of Z’s will produce a force between the

two giants, conjectured to be an attractive force in [17].

A very concrete application of our methods is the construction of the gauge theory

operator dual to the fat magnon [37].9 The fat magnon is a bound state of a giant graviton

and giant magnons (fundamental strings). Essentially, due to the background five form

flux, the giant magnon becomes fat by the Myers effect [38]. The fat magnon has the same

anomalous dimension as the giant magnon. It would be nice to explicitely recover this

anomalous dimension using our technology.10

Finally, there is now a proposal for gauge theory operators dual to brane-anti-brane

states [39]. This proposal was made, at the level of the free field theory, by identifying

the operators that diagonalize the two point functions of operators built from Z and Z†.

Since these states are non-supersymmetric, corrections when the coupling is turned on are

expected to be important for the physics. It would be interesting to extend the technology

developed in this article to this non-supersymmetric setting.
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Navigating the appendices. In the appendices we will freely make use of results ob-

tained in the previous two articles in this series [30, 32]. A reader wishing to master the

details of our analysis will need to review this background. We will now explain which

results are used when. For a discussion of intertwiners see sections 2.2 and section C.1

of [30]. In appendix B we make frequent use of the subgroup swap rule which is derived

in appendix D of [30]. This is perhaps the most technical result from [30, 32] that is used

8For the m = 3 case, see appendix F.
9The fat magnon in the plane wave background is the hedgehog of [19]

10We would like to thank Shahin Sheikh-Jabbari for suggesting this to us.
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in this article. For this reason, we have reviewed a concrete example in the first section of

appendix B. We also use the character identity given at the end of section D.1 of [30]. The

strategy for deriving the hopping identities of appendix C was given in [32].

A. Intertwiners

Intertwiners are used to construct operators dual to states with open strings stretching

between giant gravitons. In this appendix we provide a general discussion of intertwiners

and their construction.

A.1 Strings stretching between two branes

The Gauss Law is a strict constraint on the allowed excited brane configurations [20]: since

the branes we consider have a compact world volume, the total charge on any given brane

must vanish. This implies that to construct a state with strings stretching between two

branes, we need at least two strings in the brane plus string system. Thus, in constructing

the restricted Schur polynomial, we will need to remove at least two boxes. For concrete-

ness, consider the case of two sphere giants, so that our restricted Schur polynomial is built

with the Young diagram R that has two columns and each column has O(N) boxes. R

has a total of n = O(N) boxes. Denote the two boxes to be removed in constructing the

restricted Schur polynomial11 by box 1 and box 2. To attach strings stretching between

these two giants, the two boxes must belong to different columns. Assume that box 1

belongs to column 1 and box 2 to column 2. After restricting Sn to an Sn−1 subgroup,

representation R subduces irrep R′ (whose Young diagram is obtained by removing box 1

from R) and irrep S′ (whose Young diagram is obtained by removing box 2 from R). If we

now further restrict to an Sn−2 subgroup, one of the irreps subduced by R′ is R′′ (whose

Young diagram is obtained by removing box 2 from R′) and one of the irreps subduced

by S′ is S′′ (whose Young diagram is obtained by removing box 1 from S′). Note that R′′

and S′′ have the same Young diagram (and hence the same dimension) but act on distinct

states in the carrier space of R. The two possible intertwiners we can define map between

the states belonging to R′′ and the states belonging to S′′.

The precise form of the intertwiners depends on the basis used for the Sn−2 irreps

ΓR′′(σ) and ΓS′′(σ). In writing down the intertwiner, we assume that ΓR′′(σ) and ΓS′′(σ)

represent σ with the same matrix. With this assumption, it is possible to put the elements

of the basis of the carrier space of R′′ into one to one correspondence with the elements

of the basis of the carrier space of S′′: |i, R′′〉 ↔ |i, S′′〉. We will use this correspondence

below. In a suitable basis, we have

ΓR(σ) =







ΓR′′(σ) 0 · · ·
0 ΓS′′(σ) · · ·
· · · · · · · · ·






,

11See appendix E for a quick review of restricted Schur polynomials and [20, 30, 32] for a detailed

discussion.
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for σ ∈ Sn−2. In constructing the restricted Schur polynomial, we also consider more

general σ ∈ Sn. In this case, if σ /∈ Sn−2, ΓR(σ) will not be block diagonal. Even in this

more general case, we will use the labels of the Sn−2 subduced subspaces to label the carrier

space of irrep R. Denote the projection operator that projects from the carrier space of

R to the R′′ subspace by PR→R′→R′′ , and the projection operator that projects from the

carrier space of R to the S′′ subspace by PR→S′→S′′. Clearly, the intertwiner which maps

from S′′ to R′′ must take the form

IR′′,S′′ = PR→R′→R′′OPR→S′→S′′ =







0 M · · ·
0 0 · · ·
· · · · · · · · ·






. (A.1)

The second possible intertwiner that we can construct is given by

IS′′,R′′ = PR→S′→S′′OPR→R′→R′′ =







0 0 · · ·
M 0 · · ·
· · · · · · · · ·






.

We want to find a unique specification for O so that M is simply the identity matrix. For

σ ∈ Sn−2 we have

ΓR(σ)IR′′,S′′ =







0 ΓR′′(σ)M · · ·
0 0 · · ·
· · · · · · · · ·







and

IR′′,S′′ΓR(σ) =







0 MΓS′′(σ) · · ·
0 0 · · ·
· · · · · · · · ·






.

Now, by assumption, ΓR′′(σ) = ΓS′′(σ) since we have σ ∈ Sn−2. Thus,

[

ΓR(σ), IR′′ ,S′′

]

=







0
[

ΓR′′(σ),M
]

· · ·
0 0 · · ·
· · · · · · · · ·






. (A.2)

Applying Schur’s Lemma (for irrep R′′) to the right hand side implies that M is the identity

matrix if and only if
[

ΓR(σ), IR′′ ,S′′

]

= 0 for all σ ∈ Sn−2. Clearly, for σ ∈ Sn−2 we have
[

ΓR(σ), PR→R′→R′′

]

=
[

ΓR(σ), PR→S′→S′′

]

= 0 so that

0 =
[

ΓR(σ), IR′′ ,S′′

]

= PR→R′→R′′

[

ΓR(σ), O
]

PR→S′→S′′ .

Thus, we will require
[

ΓR(σ), O
]

= 0, ∀σ ∈ Sn−2. (A.3)

If we specify a condition that determines the normalization of the intertwiner, then this

normalization condition and (A.3) provide the specification for O that we were looking for.

The normalization of the intertwiner is fixed by demanding that

Tr (M) = dimR′′ ,
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with dimR′′ the dimension of irrep R′′. This provides a unique definition of the intertwiner.

For the example we are considering here, imagine that the Sn−1 subgroup is obtained as

G = {σ ∈ Sn|σ(n) = n},
and further that the Sn−2 subgroup is obtained as

H = {σ ∈ G|σ(n − 1) = n− 1}.
Then the intertwiner is given by

IR′′,S′′ = NPR→R′→R′′ΓR(n, n− 1)PR→S′→S′′ ,

with

N−1 =
Tr R′′,S′′(ΓR(n, n− 1))

dimR′′

≡
dimR′′
∑

i=1

〈R′′, i|ΓR(n, n− 1)|S′′, i〉
dimR′′

.

This last equation makes use of the correspondence between the bases of the carrier spaces

R′′ and S′′. Using the technology developed in the next appendix, we find

Tr R′′,S′′(ΓR(n, n− 1))

dimR′′

=

√

1− 1

(c1 − c2)2
,

where c1 and c2 are the weights associated with box 1 and box 2 respectively. Note that

the above trace is invariant under simultaneous similarity transformations of R′′ and S′′.

It will however, change under general similarity transformations so that this last result is

dependent on our choice of basis.

A.2 The general construction

In the previous section we have developed our discussion of the intertwiner using a system

of two branes with strings stretching between them. Our conclusion however, is completely

general. For any system of branes with strings stretching between the branes, the inter-

twiner is always given, up to normalization, by the product (projection operator)×(group

element)×(projection operator). The Gauss Law forces the net charge on any given brane’s

worldvolume to vanish. This implies that for every string leaving a brane’s worldvolume,

there will be a string ending on the worldvolume. Thus, starting with any particular brane

with a stretched string attached, we can follow the string to the next brane, switch to

the stretched string leaving that brane, follow it and so on, until we again reach the first

brane. If we move along k stretched strings before returning to the starting point, the

group element is ΓR(n, n− k+1). The normalization factor easily follows using the results

of appendix B.

A.3 Example

Consider the excited brane system described by the diagram (see appendix E for a summary
of our graphical notation)

1
2

2
3

3
1 .
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The boxes are labeled by the upper index in each box and the weight of box i is denoted
ci. The projector PR→R′′′

1
projects through the following sequence of irreps

→ → → .

The projector PR→R′′′

2
projects through the following sequence of irreps

→ → → .

The intertwiner is now given by

I12 = NPR→R′′′

2
ΓR ((n, n − 2))PR→R′′′

1
,

where

N−1 =
Tr R′′′

2 ,R′′′

1
(ΓR ((n, n− 2)))

dimR′′′

1

=
1

c2 − c3

√

1− 1

(c1 − c2)2

√

1− 1

(c1 − c3)2
,

is easily computed using the methods of appendix B. To understand the order of the

projection operators, note that

Tr R′′′

1 ,R′′′

2

(

ΓR(σ)
)

=
∑

i

〈i, R′′′
1 |ΓR(σ)|i, R′′′

2 〉

= Tr (N−1PR→R′′′

2
ΓR(n, n− 2)PR→R′′′

1
ΓR(σ)),

so that the row (column) index of the trace is column (row) index of the intertwiner re-

spectively.

B. Restricted characters

Starting from Sn, define a chain of subgroups Gi i = 1, . . . , d as follows

G1 = {σ ∈ Sn|σ(n) = n} (B.1)

Gi = {σ ∈ Gi−1|σ(n − i+ 1) = n− i+ 1}, i = 2, 3, . . . , d. (B.2)

In this appendix we will give a simple algorithm for the computation of

χR1,R2

(

(p1, p2, . . . , pm)
)

≡ Tr R1,R2

(

ΓR

(

(p1, p2, . . . , pm)
)

)

with R1 and R2 irreps of Gd subduced from R, (p1, p2, . . . , pm) is an element of Sn specified

using the cycle notation and n − d < pi ≤ n ∀i. We call χR1,R2 a restricted character.

If R1 = R2, we will simply write χR1 . We have already seen that restricted characters
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determine the normalization of the intertwiners. Further, they are also needed in the

derivation of the hopping identities that determine the interactions between strings and

the branes to which they are attached.

The first subsection of this appendix reviews the subgroup swap rule in the setting of

a specific example. In the next subsection we will derive the algorithm for the computation

of the restricted character. The third subsection of this appendix describes a graphical

notation which considerably simplifies the computation. The remainder of the appendix

then develops this diagrammatic notation further.

B.1 Review of the subgroup swap rule

In this appendix, we review the subgroup swap rule. The reader requiring a more detailed

explanation can consult appendix D of [30]. Consider the restricted Schur polynomial

χ
(2)
R,R′′

∣

∣

∣

1

∣

∣

∣

2
=

1

(n− 2)!

∑

σ∈Sn

TrR′′ (ΓR(σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
(W (1))iniσ(n)

.

The labelling on the left hand side tells us to first restrict with respect to the subgroup

that leaves the index of W (1) inert, and then with respect to the subgroup that leaves the

index of W (2) inert. In general, we will get a different polynomial if we were to restrict first

with respect to the subgroup that leaves the index of W (2) inert, and then with respect to

the subgroup that leaves the index of W (1) inert. There is a relation between these two

sets of polynomials, which is known as the “subgroup swap rule”.

We use the weights of the boxes of the Young diagrams in the subgroup swap rule. All

weights are defined by the Young diagram before the swap. The weight of the box labelled

with upper index 1 is denoted by cU1 and the weight of the box labelled with lower index 1

is denoted by cL1 . Similarly for index 2. The upper and lower no-swap factors are given by

NU =

√

1− 1

(cU1 − cU2 )2
, NL =

√

1− 1

(cL1 − cL2 )2
.

The upper and lower swap factors are given by

SU =
1

cU1 − cU2
, SL =

1

cL1 − cL2
.

Our example uses a restricted Schur with three strings attached. Swapping strings 2 and

3, the subgroup swap rule gives

χ 1
2

2
3

3
1

(σ)
∣

∣

∣

1

∣

∣

∣

2

∣

∣

∣

3
=















NLNUχ 1
2

2
3

3
1

(σ) + SUNLχ 1
2

3
2
1

(σ)















∣

∣

∣

1

∣

∣

∣

3

∣

∣

∣

2

+















SLNUχ 1
2

2
1

3

(σ) + SUSLχ 1
2

3
1

2
3

(σ)















∣

∣

∣

1

∣

∣

∣

3

∣

∣

∣

2
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where

NU =

√

1− 1

(cU2 − cU3 )2
=

√
3

2

NL =

√

1− 1

(cL2 − cL3 )2
=

√
3

2
,

SU =
1

cU2 − cU3
=

1

2
,

SL =
1

cL2 − cL3
=

1

2
.

Whenever an index is swapped, we include a swap factor, and whenever there is no swap,

we include a no-swap factor.

B.2 Computing restricted characters

Consider an irrep R of Sn labeled by a Young diagram which has at least two boxes, either

of which can be dropped to leave a valid Young diagram. Label these two boxes by 1 and

2. Denote the weights of these boxes by c1 and c2. Denote the irrep of Sn−2 obtained by

dropping box 1 and then box 2 by R′′
1 . Denote the irrep of Sn−2 obtained by dropping box

2 and then box 1 by R′′
2 . Our first task is to compute

Tr R′′

1 ,R′′

2
(ΓR ((n, n− 1))) .

Using the subgroup swap rule obtained in [30], we can write

χR′′

1
((n, n− 1)) =

[

1− 1

(c1 − c2)2
]

χR′′

2
((n, n− 1)) +

1

(c1 − c2)2
χR′′

1
((n, n− 1)) (B.3)

+

√

1− 1

(c1−c2)2
1

c1−c2

[

χR′′

1 ,R′′

2
((n, n−1))+χR′′

2 ,R′′

1
((n, n−1))

]

.

A second application of the subgroup swap rule gives

χR′′

2 ,R′′

1
((n, n− 1)) =

[

1− 1

(c1 − c2)2
]

χR′′

1 ,R′′

2
((n, n− 1)) +

1

(c1 − c2)2
χR′′

2 ,R′′

1
((n, n− 1))

+

√

1− 1

(c1−c2)2
1

c1−c2

[

χR′′

2
((n, n−1))−χR′′

1
((n, n−1))

]

. (B.4)

Now, substituting the results [30]

χR′′

1
((n, n− 1)) =

1

c1 − c2
dimR′′

1
, χR′′

2
((n, n − 1)) =

1

c2 − c1
dimR′′

2
,

into (B.3) and (B.4) and solving, we obtain

χR′′

1 ,R′′

2
((n, n− 1)) =

√

1− 1

(c1 − c2)2
dimR′′

1
= χR′′

2 ,R′′

1
((n, n− 1)) .
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Next, consider an irrep of Sn labeled by Young diagram R . Choose three boxes in this

Young diagram, and label them 1, 2 and 3 respectively. Choose the boxes so that dropping

box 1 gives a legal Young diagram R′ labeling an irrep of Sn−1, dropping box 1 and then

box 2 gives a legal Young diagram R′′ labeling an irrep of Sn−2, and dropping box 1, then

box 2 and then box 3 again gives a legal Young diagram R′′′ labeling an irrep of Sn−3. We

will compute

χR′′′ ((n, n− 2)) = Tr R′′′ (ΓR ((n, n − 2))) .

In what follows, we will frequently need to refer to vectors belonging to the carrier spaces

of specific representations subduced by R when boxes are dropped from R. A convenient

notation is to list the labels of the boxes that must be dropped from R in the order in which

they must be dropped. Thus, the ket |i, 123〉 is the ith ket belonging to the carrier space

of the Sn−3 irrep obtained by dropping box 1, then box 2 and then box 3 from R; the ket

|j, 231〉 is the jth ket belonging to the carrier space of the Sn−3 irrep obtained by dropping

box 2, then box 3 and then box 1 from R (assuming of course that the boxes can be dropped

from R in this order, giving a legal Young diagram at each step). Start by writing

χR′′′((n, n − 2)) =

dimR′′′
∑

i=1

〈i, 123|ΓR ((n, n− 2)) |i, 123〉

=

dimR′′′
∑

i=1

〈i, 123|ΓR′ ((n−1, n−2)) ΓR ((n, n−1)) ΓR′ ((n−1, n−2)) |i, 123〉.

Noting that ΓR′ ((n− 1, n − 2)) |i, 123〉 must belong to the carrier space of R′, and using

the completeness relation (1R′ is the identity on the R′ carrier space)

1R′ =

dimR′
∑

k=1

|k, 1〉〈k, 1|,

we have

χR′′′ ((n, n− 2)) =

dimR′′′
∑

i=1

dimR′
∑

j,k=1

〈i, 123|ΓR′ ((n− 1, n − 2)) |k, 1〉〈k, 1|ΓR ((n, n − 1)) |j, 1〉

×〈j, 1|ΓR′ ((n− 1, n− 2)) |i, 123〉.

Now, decompose R′ into a direct sum of Sn−2 irreps R′ = ⊕R′′
β. Use the label β to denote

the box that must be dropped from R′ to obtain R′′
β. Thus, we can write

1R′ =

dimR′
∑

k=1

|k, 1〉〈k, 1| =
∑

β

dimR′′

β
∑

k=1

|k, 1β〉〈k, 1β|,

and hence

χR′′′ ((n, n− 2)) =

dimR′′′
∑

i=1

∑

β1,β2

dimR′′

β1
∑

k=1

dimR′′

β2
∑

j=1

〈i, 123|ΓR′ ((n− 1, n − 2)) |k, 1β1〉

×〈k, 1β1|ΓR ((n, n−1)) |j, 1β2〉〈j, 1β2 |ΓR′ ((n−1, n−2)) |i, 123〉.
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Now, introduce the operator O(2) obtained by summing all two cycles of the Sn−2 subgroup

of which the R′′
β are irreps. This operator is a Casimir of Sn−2. If the Young diagram R′′

β

has ri boxes in the ith row and ci boxes in the ith column, then when acting on the carrier

space of R′′
β we have [40]

O(2)|i, 1β〉 =





∑

i

ri(ri − 1)

2
−

∑

j

cj(cj − 1)

2



 |i, 1β〉 ≡ λβ|i, 1β〉.

Clearly, for the problem we study here, λβ1 = λβ2 if and only if Rβ1 and Rβ2 have the same

shape as Young diagrams. From the definition of the G2 subgroup given above, it is clear

that
[

O(2),ΓR ((n, n − 1))
]

= 0.

It is now a simple matter to see that

λβ1〈k, 1β1|ΓR ((n, n− 1)) |j, 1β2〉 = 〈k, 1β1|O(2)ΓR ((n, n− 1)) |j, 1β2〉
= 〈k, 1β1|ΓR ((n, n− 1))O(2)|j, 1β2〉
= λβ2〈k, 1β1|ΓR ((n, n − 1)) |j, 1β2〉

so that 〈k, 1β1|ΓR ((n, n − 1)) |j, 1β2〉 vanishes if Rβ1 and Rβ2 do not have the same shape.

A completely parallel argument, using a Casimir of Sn−3, can be used to show that

〈j, 1α1α2|ΓR′ ((n− 1, n − 2)) |i, 123〉 is only non-zero if α1 = 2, α2 = 3 or α1 = 3, α2 = 2.

Thus,

χR′′′ ((n, n−2)) =

dimR′′′
∑

i=1,j,k

[

〈i, 123|ΓR′ ((n− 1, n − 2)) |k, 123〉〈k, 123|ΓR ((n, n− 1)) |j, 123〉

×〈j, 123|ΓR′ ((n−1, n−2)) |i, 123〉 + 〈i, 123|ΓR′ ((n−1, n−2)) |k, 132〉
×〈k, 132|ΓR ((n, n−1)) |j, 132〉〈j, 132|ΓR′ ((n−1, n−2)) |i, 123〉

]

=

[

1

(c2 − c3)2
1

c1 − c2
+

(

1− 1

(c2 − c3)2
)

1

c1 − c3

]

dimR′′′ .

This example illustrates the general algorithm to be used to compute restricted characters:

• The group element whose trace is to be computed, can be decomposed into a product

of two cycles of the form ΓR ((i, i + 1)). A complete set of states is inserted between

each factor.

• Using appropriately chosen Casimirs, one can argue that the only non-zero matrix

elements of each factor, are obtained when the order of boxes dropped to obtain the

carrier space of the bra matches the order of boxes dropped to obtain the carrier

space of the ket, except for the (n− i+ 1)th and (n− i+ 2)th boxes, whose order can

be swapped.

• We can plug in the known value of the restricted character, which we have computed

for precisely the two cases arising in the previous point.
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B.3 Strand diagrams

Strand diagrams are a graphical notation designed to compute restricted characters. Strand

diagrams keep track of two things:

• The order in which boxes are to be dropped and the identity (= position within the

Young diagram) of the boxes.

• The group element whose trace we are computing.

If we are to drop n boxes, we draw a picture with n columns. The columns are populated

by labeled strands - each strand represents one of the boxes that are to be dropped. We

label the strands by the upper index in the box. The reader is strongly advised to read

appendix E for a summary of our graphical notation. Whatever appears in the first column

is to be dropped first; whatever appears in the second column is to be dropped second and

so on. The strands are ordered at the top of the diagram, according to the order in which

they must be dropped to get the row index. The strands are ordered at the bottom of the

diagram according to the column index. The strands move from the top of the diagram to

the bottom of the diagram, without breaking, so that strands ends at the top connect to

the corresponding strand ends at the bottom. To connect the strands (which in general are

in a different order at the top and bottom of the diagram) we need to weave the strands,

thereby allowing them to swap columns. The allowed swaps depends on the specific group

element whose trace we are computing. To determine the allowed swaps, write the group

element as a product of cycles of the form (i, i + 1). For example, we would write

(n, n− 2) = (n, n− 1)(n − 1, n − 2)(n, n− 1).

Each time we drop a box, we are considering a new subgroup. The action of the permutation

group can be visualized as a permutation of n indices. The subgroups are obtained by

considering elements that hold certain indices fixed (see (B.1) and (B.2)). Choose the

subgroups involved so that when box i is dropped, n − i + 1 is held fixed. Clearly then,

each column j is associated with the index n− j+1. Each cycle (i, i+1) is drawn as a box

which straddles the columns associated with indices i and i + 1. When the strands pass

through a box, they may do so without swapping or by swapping columns. Each box is

associated with a factor. Imagine that the strands passing through the box, reading from

left to right, are labeled n and m. The weights associated with these boxes are cn and cm
respectively. If the strands do not swap inside the box the factor for the box is

fno swap =
1

cn − cm
.

If the strands do swap inside the box, the factor is

fswap =

√

1− 1

(cn − cm)2
.
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Figure 3: The strand diagram used in the computation of χ1.

Denote the product of the factors, one from each box, by F . We have

Tr R1,R2

(

ΓR(σ)
)

=
∑

i

FidimR1 ,

where the index i runs over all possible paths consistent with the boundary conditions.

With a little thought, the astute reader should be able to convince herself that this graphical

rule is nothing but a convenient representation of the computation of the last subsection.

B.4 Strand diagram examples

In this section we will illustrate the use of strand diagrams in the computation of restricted

characters. For our first example, we consider the computation of

χ1 = Tr 1
3

2
1

3
2

(

Γ
(

(6, 4)
)

)

.

Writing (6, 4) = (6, 5)(4, 5)(6, 5) we obtain the strand diagram shown in figure 3. The

factors for the upper most, middle and lower most boxes are

√

1− 1

(c1 − c2)2
,

√

1− 1

(c1 − c3)2
,

1

c2 − c3

respectively. Thus,

χ1 =

√

1− 1

(c1 − c2)2

√

1− 1

(c1 − c3)2
1

c2 − c3
dim

= 2

√

1− 1

(c1 − c2)2

√

1− 1

(c1 − c3)2
1

c2 − c3
.

The alert reader may worry that our recipe is not unique. Indeed we could also have

written (6, 4) = (4, 5)(6, 5)(4, 5). In this case, we obtain the strand diagram given in
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Figure 4: A second strand diagram that can be used in the computation of χ1.

figure 4. In this case, the factors for the upper most, middle and lower most boxes are

1

c2 − c3
,

√

1− 1

(c1 − c2)2
,

√

1− 1

(c1 − c3)2

respectively. This gives exactly the same value for χ1.

Next, we consider the computation of

χ2 = Tr 1
2

3

(

Γ
(

(6, 4)
)

)

.

This example is interesting as more than one path contributes. Writing (6, 4) =

(4, 5)(6, 5)(4, 5) we obtain the strand diagrams shown in figure 5. The product of fac-

tors for the diagram on the left is

1

c1 − c3

[

1− 1

(c2 − c3)2
]

.

The product of factors for the diagram on the right is

1

c1 − c2
1

(c2 − c3)2
.

Thus,

χ2 =

(

1

c1 − c3

[

1− 1

(c2 − c3)2
]

+
1

c1 − c2
1

(c2 − c3)2
)

dim

= 2

(

1

c1 − c3

[

1− 1

(c2 − c3)2
]

+
1

c1 − c2
1

(c2 − c3)2
)

.

The reader can check that the same value for χ2 is obtained by decomposing (6, 4) =

(6, 5)(4, 5)(6, 5).

Finally, consider

χ3 = Tr 1
2

3

(

Γ
(

1
)

)

.
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Figure 5: The strand diagrams used in the computation of χ2.

Figure 6: The strand diagrams used in the computation of χ3.

Since we consider the identity element, the strand diagram has no boxes and hence χ3 =

dim = 2. Since (4, 5)(4, 5) = 1 we could also have written

χ3 = Tr 1
2

3

(

Γ
(

(4, 5)(4, 5)
)

)

.

In this case there are two strand diagrams given in figure 6. Summing the contributions

from these two strand diagrams we obtain

χ3 =
1

(c2 − c3)2
dim +

(

1− 1

(c2 − c3)2
)

dim = dim = 2.

Once again, the two ways of writing the restricted character give the same result. Note

that the trace

χ3 = Tr 1
2

2
1

3

(

Γ
(

1
)

)

,

clearly vanishes because we are tracing the identity over an off the diagonal block. This

is reflected graphically by the fact that there is no strand diagram that can be drawn -

– 31 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
9

the order of strands at the top of the diagram does not match the order of strands at the

bottom of the diagram and since we consider the identity element, the strand diagram has

no boxes.

B.5 Tests of the restricted character results

By summing well chosen restricted characters, one can recover the characters of Sn which

are known. This provides a number of tests that our restricted character formulas pass.

As an example, consider the computation of χR ((6, 7)) for

R = .

From the character tables for S7 we find χR ((6, 7)) = 4. In terms of restricted characters

χR ((6, 7)) = χ 2 1 ((6, 7)) + χ 1
2

((6, 7)) + χ 2
1

((6, 7)) .

Using the algorithm given above, it is straight forward to verify that

χ 2 1 ((6, 7)) = dim = 4,

χ 1
2

((6, 7)) =
1

6
, χ 2

1

((6, 7)) = −1

6
,

which do indeed sum to give 4. The reader is invited to check some more examples herself.

As a further check of our methods, we have computed the restricted characters

Tr R1,R2

(

ΓR

[

σ
])

numerically. This was done by explicitly constructing the matrices

ΓR

[

σ
]

. Each representation used was obtained by induction. One induces a reducible

representation; the irreducible representation that participates was isolated using pro-

jection operators built from the Casimir obtained by summing over all two cycles. See

appendix B.2 of [30] for more details. The resulting irreducible representations were

tested by verifying the multiplication table of Sn. The intertwiners were computed using

the projection operators of [30] and the results of appendix A; the normalization of the

intertwiner was computed numerically.

B.6 Representations of Sn from strand diagrams

Using Strand diagrams, it is possible to write down the irreducible matrix representations

of Sn. We will treat the simplest nontrivial example of S3. First consider the irrep.

Start by numbering the boxes in the Young diagram labeling the irrep, with an ordering

in which the boxes are to be removed, so that one is left with a legal Young diagram after

each box is removed. These labeled Young diagrams are in one-to-one correspondence with

the matrix indices of the matrices in the irrep. For our example,

i = 1,↔
3 1
2 i = 2,↔

3 2
1 .
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Each matrix element of Γ ((12)) is given by a single strand diagram

[

Γ ((12))
]

11
= Tr 3 1

2

((12)) =
1

c1 − c2
=

1

2
,

[

Γ ((12))
]

12
= Tr

3 1
2

2
1

((12)) =

√

1− 1

(c1 − c2)2
=

√
3

2
,

[

Γ ((12))
]

21
= Tr

3 2
1

1
2

((12)) =

√

1− 1

(c1 − c2)2
=

√
3

2
,

and
[

Γ ((12))
]

22
= Tr 3 2

1

((12)) =
1

c1 − c2
= −1

2
,

so that

Γ ((12)) =

[

1
2

√
3

2√
3

2 −1
2

]

.

In exactly the same way we obtain

Γ ((23)) =

[

−1 0

0 1

]

.

These two elements can now be used to generate the complete irrep.

Next consider . There is only one valid labeling 3 2 1, so that the representation

is one dimensional. It is straight forward to obtain

Tr 3 2 1 ((12)) =
1

c1 − c2
= 1, Tr 3 2 1 ((23)) =

1

c2 − c3
= 1,

which are the correct results. Finally, consider . Again, there is only one valid labeling

so that the representation is again one dimensional. We find

Tr 3
2
1

((12)) =
1

c1 − c2
= −1, Tr 3

2
1

((23)) =
1

c2 − c3
= −1,

which are again the correct results.

C. Hopping identity

In this appendix, we derive identities that can be used to obtain the Cuntz chain Hamilto-

nian that accounts for the O(g2
YM) correction to the anomalous dimension of our operators.

To construct the “hop off” process, we use the fact that whenever a Z field hops past the

borders of the open string word W , the resulting restricted Schur polynomial decomposes
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the figure shows which irrep is obtained when boxes in R are dropped.

into a sum of two types of systems, one is a giant with a closed string and another is a

string-giant system where the giant is now bigger. In the large N limit only the second

type needs to be considered. The identities we derive in this appendix express this decom-

position. The irreps which play a role in the derivation of the identities are illustrated in

figure 7. The basic structure of the derivation of these identities is very similar. For this

reason, we explicitly derive an identity in the next subsection and simply state the remain-

ing identities. In contrast to the case of a single string attached [32], here it does make a

difference if the first or last sites of the string participate in the hopping. The identities

needed in these two cases are listed separately. We have performed extensive numerical

checks of the identities, which we describe next. Finally, we explain how to express the

leading large N form of the identities, in terms of states of the Cuntz chain.
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C.1 Derivation of a Hopping identity

Our starting point is the restricted Schur polynomial

χ
(2)
R,R′′

∣

∣

∣

1

∣

∣

∣

2
=

1

(n− 2)!

∑

σ∈Sn

Tr R′′ (ΓR(σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
(W (1))iniσ(n)

.

There are two labeled boxes in R; dropping box 1 gives irrep R′; dropping box 2 gives irrep

R′′. Since R′ is an irrep of the Sn−1 subgroup G1 = {σ ∈ Sn|σ(n) = n}, we say that the

open string described by the word W (1) is associated to box 1. Since R′′ is an irrep of the

Sn−2 subgroup G2 = {σ ∈ G1|σ(n − 1) = n− 1}, we say that the open string described by

the word W (2) is associated with box 2. Notice that, in the chain of subductions used to

define the restricted Schur polynomial, the box associated with W (1) is dropped before the

box associated to W (2). We have indicated this with the notation
∣

∣

∣

1

∣

∣

∣

2
. Rewrite the sum

over Sn as a sum over G1 and its cosets

χ
(2)
R,R′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
=

1

(n−2)!

∑

σ∈G1

[

Tr R′′(ΓR′(σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
Tr(W (1))

+Tr R′′ (ΓR((1, n)σ))(W (1)Z)i1iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
+ · · ·+

+Tr R′′ (ΓR((n−2, n)σ))Zi1
iσ(1)
· · · (W (1)Z)

in−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
+

+ Tr R′′ (ΓR((n−1, n)σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
((W (1)W (2))

in−1

iσ(n−1)

]

.

The first term on the right hand side is

1

(n−2)!

∑

σ∈G1

Tr R′′(ΓR′(σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
Tr (W (1))=χ

(1)
R′,R′′(Z,W

(2))Tr (W (1)).

Using the methods of appendix B, we know that

Tr R′′ (ΓR((n − 1, n)σ)) =
1

c1 − c2
Tr R′′ (ΓR′(σ)) ,

so that the last term on the right hand side is

1

(n− 2)!

∑

σ∈G1

Tr R′′ (ΓR((n, n− 1)σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
(W (1)W (2))

in−1

iσ(n−1)

=
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(1)W (2)).

Focus on the remaining terms on the right hand side. Each of these terms makes the same

contribution. We need to evaluate

Tr R′′ (ΓR((j, n)σ) =

dimR′′
∑

i=1

〈i, 12|ΓR((j, n))ΓR′ (σ)|i, 12〉.

Using the techniques of appendix B, it is straight forward to show that (the sum on α in

the next equation is a sum over all boxes that can be removed from R′′ to leave a valid
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Young diagram; the relevant Sn−3 subgroup is given by {σ ∈ G2|σ(j) = j})

Tr R′′ (ΓR((j, n)σ) =
∑

α

dimR′′′
α

∑

i,k=1

〈i, 12α|ΓR((j, n))|k, 12α〉〈k, 12α|ΓR′ (σ)|i, 12α〉

+
∑

α

dimR′′′
α

∑

i,k=1

〈i, 12α|ΓR((j, n))|k, 1α2〉〈k, 1α2|ΓR′ (σ)|i, 12α〉

=
∑

α

1

c1 − cα

[

1 +
1

(c1 − c2)(c2 − cα)

]

Tr R′′′

α
(ΓR′(σ))

+
∑

α

1

c1 − c2
1

c1 − cα

√

1− 1

(c2 − cα)2
Tr T ′′′

α ,R′′′

α
(ΓR′(σ)).

Thus, summing the remaining n− 2 terms we obtain

∑

α

1

c1 − cα

[

1 +
1

(c1 − c2)(c2 − cα)

]

χ
(2)
R′,R′′′

α
(Z,W (1)Z,W (2))

∣

∣

∣

2

∣

∣

∣

1

+
∑

α

1

c1 − c2
1

c1 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′

α ,R′′′

α
(Z,W (1)Z,W (2))

∣

∣

∣

2

∣

∣

∣

1
.

A straight forward application of the subgroup swap rule gives

χ
(2)
R′,R′′′

α
(Z,W (1)Z,W (2))

∣

∣

∣

2

∣

∣

∣

1
=

[(

1− 1

(c2 − cα)2

)

χ
(2)
R′,T ′′′

α
(Z,W (1)Z,W (2))

+
1

(c2−cα)2
χ

(2)
R′,R′′′

α
(Z,W (1)Z,W (2))+

√

1− 1

(c2−cα)2
1

c2−cα

(

χ
(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2))

+χ
(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2))

)] ∣

∣

∣

1

∣

∣

∣

2
,

χ
(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2))

∣

∣

∣

2

∣

∣

∣

1
=

[(

1− 1

(c2 − cα)2

)

χ
(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2))

− 1

(c2−cα)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2))+

√

1− 1

(c2−cα)2
1

c2−cα

(

χ
(2)
R′,R′′′

α
(Z,W (1)Z,W (2))

−χ(2)
R′,T ′′′

α
(Z,W (1)Z,W (2))

)] ∣

∣

∣

1

∣

∣

∣

2
.
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Thus, we finally obtain

χ
(2)
R,R′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
= χ

(1)
R′,R′′(Z,W

(2))Tr (W (1)) +
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(1)W (2))

+
∑

α

[

1

c1−cα

(

1− 1

(c2−cα)2

)

χ
(2)
R′,T ′′′

α
(Z,W (1)Z,W (2))

+
1

c1−c2
1

(c2−cα)2
χ

(2)
R′,R′′′

α
(Z,W (1)Z,W (2)) (C.1)

+
1

c1−c2
1

c2−cα

√

1− 1

(c2−cα)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2))

+
1

c1−cα
1

c2−cα

√

1− 1

(c2−cα)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2))

]

∣

∣

∣

1

∣

∣

∣

2
.

The above identity is relevant for interactions in which the impurity hops out of the

last site of the string. For the hopping interaction in which the impurity hops out of the

first site of the string, the right hand side of our identity should be written in terms of

ZW (1). This identity is easily derived by rewriting the sum over Sn in terms of right cosets

of G1 instead of left cosets as we have done above.

The identity derived above is relevant for the description of interactions in which

string 1 exchanges momentum with the branes in the boundstate. To derive identities that

allow string 2 to exchange momentum with the branes in the boundstate, we first use the

subgroup swap rule to swap strings 1 and 2. We then rewrite the sum over Sn in terms of

a sum over Sn−1 and its cosets and then employ character identities as above. We give a

complete set of identities in the next two subsections.

On first inspection, our identity (C.1) may appear intimidating. For this reason, we

conclude this section with a concrete example of the use of our identity.

Consider for example χ
(2)
R,R′′ =

1
2

. In C.1 the sum on α now yields one term

for χ
(2)
R′,T ′′′

α
(Z,W (1)Z,W (2)), two terms for χ

(2)
R′,R′′′

α
(Z,W (1)Z,W (2)) and one term for

χ
(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2)) and χ

(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2)). Explicitly:

χ
(2)
R′,T ′′′

α
(Z,W (1)Z,W (2)) =

2
1+ ,

χ
(2)
R′,R′′′

α
(Z,W (1)Z,W (2)) =

1+

2 ,

2
1+

,

χ
(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2)) =

1+

2
2
1+ ,

χ
(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2)) =

2
1+

1+

2 ,
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Now, c1 = N + 2, c2 = N and cα (for a particular term in the identity) is equal to the

weight of the labelled box in the restricted Schur polynomial of that term that does

not correspond to either of the labelled boxes in the original Schur polynomial. The

identity C.1 therefore becomes:

1
2 ∣

∣

∣

1

∣

∣

∣

2
=

2
Tr (W (1)) +

1

2

12

+
3

16

2
1+

∣

∣

∣

1+

∣

∣

∣

2

+
1

8

1+

2
∣

∣

∣

1+

∣

∣

∣

2
+

1

2

2
1+

∣

∣

∣

1+

∣

∣

∣

2
+

√
3

16

2
1+

1+

2

∣

∣

∣

1+

∣

∣

∣

2
+

√
3

8

1+

2
2
1+

∣

∣

∣

1+

∣

∣

∣

2
.

C.2 Identities relevant to Hopping off the first site of the string

χ
(2)
R,R′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
= χ

(1)
R′,R′′(Z,W

(2))Tr (W (1)) +
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑

α

[

1

c1−cα

(

1− 1

(c2−cα)2

)

χ
(2)
R′,T ′′′

α
(Z,ZW (1),W (2))

+
1

c1−c2
1

(c2−cα)2
χ

(2)
R′,R′′′

α
(Z,ZW (1),W (2)) (C.2)

+
1

c1−c2
1

c2−cα

√

1− 1

(c2−cα)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))

+
1

c1−cα
1

c2−cα

√

1− 1

(c2−cα)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,ZW (1),W (2))

]

∣

∣

∣

1

∣

∣

∣

2

The form of this identity is rather intuitive. The first term on the right hand side contributes

to the process in which the bound state emits string 1; the second term describes the process

in which the two open strings join to form one long open string. In both of these processes,

the box which string 1 occupied on the left hand side does not appear on the right hand side.

These two processes will not contribute to our Cuntz chain Hamiltonian; they are relevant

for the description of interactions which change the number of open strings attached to the

boundstate and do not contribute at the leading order of the large N expansion.

It is instructive to consider the form of this identity for well separated branes. For

well separated branes, we have |c1 − c2| ≫ 1. For |c1 − cα| ∼ 1, |c2 − cα| ≫ 1 so that of

the last four terms only the first one contributes, giving ≈ 1
c1−cα

χ
(2)
R′,T ′′′

α
(Z,ZW (1),W (2)).

Thus, string 2 stays in box 2 and string 1 is close to where it started. Note that dropping

terms of order (c1 − c2)−1 or (cα − c2)−1 we obtain

χ
(2)
R,R′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
≈ χ(1)

R′,R′′(Z,W
(2))Tr (W (1))+

∑

α

1

c1 − cα
χ

(2)
R′,T ′′′

α
(Z,ZW (1),W (2)),

which is the identity of [32].
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Next, consider the stretched string identities

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑

α

[

1

c1 − cα
1

c2 − cα

√

1− 1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,ZW (1),W (2)) (C.3)

+
1

c1−cα

√

1− 1

(c2−cα)2

√

1− 1

(c1−c2)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))

]

∣

∣

∣

1

∣

∣

∣

2

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z,W

(2)W (1))

+
∑

α

[

1

c1 − cα
1

c2 − cα

√

1− 1

(c1 − c2)2
χ

(2)
S′,S′′′

α
(Z,ZW (1),W (2)) (C.4)

+
1

c2−cα

√

1− 1

(c1−cα)2

√

1− 1

(c1−c2)2
χ

(2)
S′→W ′′′

α S′′′

α
(Z,ZW (1),W (2))

]

∣

∣

∣

1

∣

∣

∣

2

Notice that in contrast to (C.2), (C.3) and (C.4) do not have a term on the right hand side

corresponding to emission of string 1. This is what we would expect for an operator dual

to a state with two strings stretching between branes, since if string 1 is emitted, it leaves

a state with string 2 stretched between branes; this state is not allowed as it violates the

Gauss Law. The process in which the two open strings join at their endpoints is allowed.

In this process, it is the box with the upper 1 label that is removed. Thus, we can identify

the Chan-Paton label for the side of the string defining the first lattice site of the Cuntz

chain with the upper label for the string, in our diagrammatic notation. This corresponds

to the first label of the restricted Schur polynomial. We will see further evidence for this

interpretation when we interpret the final form of the Hamiltonian.

If we again consider the limit of two well separated branes, we find that (C.3) becomes

χ
(2)
R→R′′S′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
≈ χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑

α

1

c1 − cα
χ

(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
.

In this case, the box with upper 1 label and lower 2 label moves from box 1 to box α (which

are close to each other in the Young diagram) and box with upper 2 label and lower 1 label

stays where it is.

The first three identities that we have discussed corresponded to an interaction in

which an impurity from the first site of string 1 interacts with the brane. The next three

identities that we discuss correspond to an interaction in which an impurity from the first
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site of string 2 interacts with the brane. The first three terms of the identity

χ
(2)
R,R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

(

1− 1

(c1 − c2)2
)

χ
(1)
S′,S′′(Z,W

(1))Tr (W (2))

+
1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W

(1))Tr (W (2)) +
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(1)W (2))

+
∑

α

[

1

c2 − cα

(

1− 1

(c1 − c2)2
)

χ
(2)
S′,S′′′

α
(Z,W (1), ZW (2))

+
1

c2 − cα
1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1), ZW (2)) (C.5)

+
1

c1 − c2
1

c1 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,W (1), ZW (2))

]

∣

∣

∣

1

∣

∣

∣

2

change the number of open strings attached to the boundstate. The first two terms cor-

respond to gravitational radiation; for both of these terms, string 2 is emitted as a closed

string. The third term corresponds to a process in which the two open strings join to give

a single open string. The order of the open string words in this term is not the same as

the order in the corresponding term of (C.2). The term above is natural because it is the

first site of string 2 that is interacting; the order in (C.2) also looks natural because in

that case it is the first site of string 1 that is interacting. Notice that the above identity is

rather different to (C.2). Physically this is surprising - since in both cases it is the first site

of the string interacting, these identities should presumably look identical. This mismatch

between the two identities is a consequence of the fact that we have treated string 1 and

string 2 differently when constructing the operator. See section 3 for further discussion of

this point.

If we again consider the limit of two well separated branes, we find that (C.5) becomes

(take |c1 − c2| ≫ 1, |c1 − cα| ≫ 1 and |c2 − cα| ∼ 1)

χ
(2)
R,R′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
≈ χ(1)

S′,S′′(Z,W
(1))Tr (W (2)) +

∑

α

1

c2 − cα
χ

(2)
S′,S′′′

α
(Z,W (1), ZW (2)).

This again reproduces the identity of [32]. Thus, the content of the formula for well

separated branes matches the corresponding limit of (C.2). This is satisfying, because in

this limit the order in which the strings are attached does not matter. This follows because

the swap factor of [32] behaves as |c1 − c2|−1.

The remaining two identities are stretched string identities. In contrast to what we

found above, there are terms corresponding to gravitational radiation in these identities.

We interpret this as a signal that there is some mixing between the operators we have

defined (which as explained above, made some arbitrary choices) to get to a “physical

basis”. See section 3 for more details. The first term in both identities

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z,W

(1)W (2))

+
1

c1 − c2

√

1− 1

(c1 − c2)2
(

χ
(1)
R′,R′′(Z,W

(1))− χ(1)
S′,S′′(Z,W

(1))
)

Tr (W (2))
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+
∑

α

[

1

c1 − cα
1

c2 − c1

√

1− 1

(c1 − c2)2
χ

(2)
S′,S′′′

α
(Z,W (1), ZW (2)) (C.6)

+
1

c2 − cα

√

1− 1

(c1 − c2)2

√

1− 1

(cα − c1)2
χ

(2)
S′→S′′′

α W ′′′

α
(Z,W (1), ZW (2))

+
1

c1 − c2
1

c1 − cα

√

1− 1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1), ZW (2))

]

∣

∣

∣

1

∣

∣

∣

2
,

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W

(1)W (2))

+
1

c1 − c2

√

1− 1

(c1 − c2)2
(

χ
(1)
R′,R′′(Z,W

(1))− χ(1)
S′,S′′(Z,W

(1))
)

Tr (W (2))

+
∑

α

[

1

c2 − cα
1

c1 − c2

√

1− 1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1), ZW (2)) (C.7)

+
1

c1 − cα

√

1− 1

(c1 − c2)2

√

1− 1

(cα − c2)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,W (1), ZW (2))

+
1

c2 − c1
1

c2 − cα

√

1− 1

(c1 − c2)2
χ

(2)
S′,S′′′

α
(Z,W (1), ZW (2))

]

∣

∣

∣

1

∣

∣

∣

2
,

corresponds to two open strings joining to form one long open string. The order of the

open string words in these terms again looks natural given that it is the first site of string

2 that is interacting. They will again not contribute in the leading order of the large N

expansion. It is satisfying that the content of the large distance limit of (C.6)

χ
(2)
R→R′′S′′(Z,W

(1),W (2))
∣

∣

∣

1

∣

∣

∣

2
≈χ(1)

S′,S′′(Z,W
(1)W (2))+

∑

α

1

c2−cα
χ

(2)
S′→S′′′

α W ′′′

α
(Z,W (1), ZW (2)),

is in complete agreement with the large distance limit of (C.3).

C.3 Identities relevant to Hopping off the last site of the string

In this subsection, impurities hop between the last site of the strings and the threebrane.

There are again six possible identities that we could consider. The first three identities de-
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scribe an interaction between the last site of string 1 and the threebrane. The first identity

χ
(2)
R,R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
= χ

(1)
R′,R′′(Z,W

(2))Tr (W (1)) +
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(1)W (2))

+
∑

α

[

1

c1 − cα

(

1− 1

(c2 − cα)2

)

χ
(2)
R′,T ′′′

α
(Z,W (1)Z,W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′

α
(Z,W (1)Z,W (2)) (C.8)

+
1

c1 − c2
1

c2 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2))

+
1

c1 − cα
1

c2 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,W (1)Z,W (2))

]

∣

∣

∣

1

∣

∣

∣

2

can be obtained from (C.2) by (i) swapping the labels on the twisted string states on the

right hand side and (ii) swapping the order of the open string words in the second term

on the right hand side. This is exactly what we would expect - it is now the last site of

the string that is interacting; to swap the first and last sites, we must swap Chan-Paton

indices i.e. we must swap the labels on the twisted string states. The discussion of this

identity now parallels the discussion of (C.2) and is not repeated.

Consider next the stretched string identities

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W

(1)W (2))

+
∑

α

[

1

c1 − cα
1

c2 − cα

√

1− 1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1)Z,W (2)) (C.9)

+
1

c1−cα

√

1− 1

(c2−cα)2

√

1− 1

(c1−c2)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,W (1)Z,W (2))

]

∣

∣

∣

1

∣

∣

∣

2
,

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z,W

(1)W (2))

+
∑

α

[

1

c1 − cα
1

c2 − cα

√

1− 1

(c1 − c2)2
χ

(2)
S′,S′′′

α
(Z,W (1)Z,W (2)) (C.10)

+
1

c2−cα

√

1− 1

(c1−cα)2

√

1− 1

(c1−c2)2
χ

(2)
S′→S′′′

α W ′′′

α
(Z,W (1)Z,W (2))

]

∣

∣

∣

1

∣

∣

∣

2
.

It is satisfying that identity (C.9) can be obtained from (C.3) and (C.10) from (C.4) by

swapping the labels for stretched string states on both sides, and reversing the order of

the open string words in the first term on the right hand side. The discussion of these

identities now parallel the discussion of (C.3) and (C.4) and is not repeated.

The remaining three identities describe an interaction between the last site of string 2
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and the threebrane. The identity

χ
(2)
R,R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

(

1− 1

(c1 − c2)2
)

χ
(1)
S′,S′′(Z,W

(1))Tr (W (2))

+
1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W

(1))Tr (W (2)) +
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑

α

[

1

c2 − cα

(

1− 1

(c1 − c2)2
)

χ
(2)
S′,S′′′

α
(Z,W (1),W (2)Z)

+
1

c2 − cα
1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1),W (2)Z) (C.11)

+
1

c1 − c2
1

c1 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,W (1),W (2)Z)

]

∣

∣

∣

1

∣

∣

∣

2

can be obtained from (C.5) by (i) swapping the labels on the twisted string states on the

right hand side and (ii) swapping the order of the open string words in the second term on

the right hand side. Finally, the stretched string identities

χ
(2)
R→R′′S′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
R′,R′′(Z,W

(2)W (1))

+
1

c1 − c2

√

1− 1

(c1 − c2)2
(

χ
(1)
R′,R′′(Z,W

(1))− χ(1)
S′,S′′(Z,W

(1))
)

Tr (W (2))

+
∑

α

[

1

c2 − cα
1

c1 − c2

√

1− 1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1),W (2)Z) (C.12)

+
1

c1 − cα

√

1− 1

(c1 − c2)2

√

1− 1

(cα − c2)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,W (1),W (2)Z)

+
1

c1 − c2
1

c2 − cα

√

1− 1

(c1 − c2)2
χ

(2)
S′,S′′′

α
(Z,W (1),W (2)Z)

]

∣

∣

∣

1

∣

∣

∣

2

χ
(2)
R→S′′R′′( Z ,W (1),W (2))

∣

∣

∣

1

∣

∣

∣

2
=

√

1− 1

(c1 − c2)2
χ

(1)
S′,S′′(Z,W

(2)W (1))

− 1

c1 − c2

√

1− 1

(c1 − c2)2
(

χ
(1)
S′,S′′(Z,W

(1))− χ(1)
R′,R′′(Z,W

(1))
)

Tr (W (2))

+
∑

α

[

1

c1 − cα
1

c2 − c1

√

1− 1

(c1 − c2)2
χ

(2)
S′,S′′′

α
(Z,W (1),W (2)Z) (C.13)

+
1

c2 − cα

√

1− 1

(c1 − c2)2

√

1− 1

(cα − c1)2
χ

(2)
S′→W ′′′

α S′′′

α
(Z,W (1),W (2)Z)

+
1

c1 − c2
1

c1 − cα

√

1− 1

(c1 − c2)2
χ

(2)
R′,R′′′

α
(Z,W (1),W (2)Z)

]

∣

∣

∣

1

∣

∣

∣

2

can be obtained from (C.5) and (C.6) by swapping the labels for stretched string states
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on both sides, and reversing the order of the open string words in the first term on the

right hand side.

C.4 Numerical test

An important result of this article are the identities presented in the previous two subsec-

tions, since they determine the hop off interaction. The hop on interaction follows from

the hop off interaction by Hermitian conjugation and the kissing interaction by composing

the hop on and the hop off interactions. Thus, the complete boundary interaction and

the corresponding back reaction on the brane are determined by these identities. For this

reason, we have tested the identities numerically. In this subsection we will explain the

check we have performed.

Our formulas are identities between restricted Schur polynomials. They must hold if

we evaluate them for any12 numerical value of the matrices Z and W . Our check entails

evaluating our identities for randomly generated matrices W (1), W (2) and Z, to check their

validity. Evaluating a restricted Schur polynomial entails evaluating a restricted character

as well as a product of traces of a product of the matrices W (1), W (2) and Z.

The restricted character Tr R′′,S′′

(

ΓR

[

σ
])

or Tr R′′

(

ΓR

[

σ
])

was computed by explic-

itly constructing the matrices ΓR

[

σ
]

. Each representation used was obtained by induction.

One induces a reducible representation; the irreducible representation that participates was

isolated using projection operators built from the Casimir obtained by summing over all

two cycles. See appendix B.2 of [30] for more details. The resulting irreducible representa-

tions were tested by verifying the multiplication table of Sn. The restricted trace is then

evaluated with the help of a projection operator or an intertwiner. The intertwiner was

computed using the results of appendix A.

The trace Tr (σZ⊗n−1W (1)W (2)) = Zi1
iσ(1)

Zi2
iσ(2)
· · ·Zin−2

iσ(n−2)
(W (2))

in−1

iσ(n−1)
(W (1))iniσ(n)

for

any given σ ∈ Sn is easily expressed as a product of traces of powers of Z, W (1) and W (2).

In total we verified over 50 specific instances of our identities, which provides a signif-

icant check of each identity.

C.5 Identities in terms of Cuntz chain states

The state-operator correspondence is available for any conformal field theory. Using this

correspondence, we can trade our (local) operators for a set of states. Concretely, this

involves quantizing with respect to radial time. Considering a fixed “radial time” slice we

obtain a round sphere. The states dual to the restricted Schur polynomial operators are

the states of our Cuntz chain. Thus, we need to rewrite the identities obtained in this

appendix as statements in terms of the states of the Cuntz oscillator chain. The states

of the Cuntz oscillator chain are normalized. Normalized states correspond to operators

whose two point function is normalized. Using the technology of [30] it is a simple task to

compute the free equal time correlators of the restricted Schur polynomials. After making

use of the free field correlators to write our identities in terms operators with unit two point

functions, we find that not all terms are of the same order in N . We drop all terms which

12In particular, not necessarily Hermitian.
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are subleading in N . These terms are naturally interpreted in terms of string splitting and

joining processes, so that they will be important when interactions that change the number

of open strings are considered.

The discussion for all of the identities above is rather similar, so we will be content to

discuss a specific example which illustrates the general features. Consider the right hand

side of (C.2). From the equal time correlator (there are a total of hi fields in open string

word W (i); fR is the product of the weights of the Young diagram R; dR is the dimension

of R as an irrep of the symmetric group; nR is the number of boxes in Young diagram R)

〈χ(1)
R′,R′′(Z,W

(2))Tr (W (1))χ
(1)
R′,R′′(Z,W

(2))†Tr (W (1))†〉

=

(

4πλ

N

)h1+h2+nR′′

h1N
h1+h2−1nR′′fR′

dR′′

dR′

(C.14)

we know that the operator χ
(1)
R′,R′′(Z,W (2))Tr (W (1)) corresponds to the state (all Cuntz

chain states are normalized to 1)

√

(

4πλ

N

)h1+h2+nR′′

h1Nh1+h2−1nR′′fR′

dR′′

dR′

|R′, R′′,W (2);W (1)〉.

The result (C.14) is not exact. When computing 〈Tr (W (1))Tr (W (1))†〉
we have only summed the leading planar contribution. When computing

〈χ(1)
R′,R′′(Z,W (2))χ

(1)
R′,R′′(Z,W (2))†〉 we have only kept the F0 contribution in the language

of [30]. We have also factorized 〈χ(1)
R′,R′′(Z,W (2))Tr (W (1))χ

(1)
R′,R′′(Z,W (2))†Tr (W (1))†〉

as 〈χ(1)
R′,R′′(Z,W (2))χ

(1)
R′,R′′(Z,W (2))†〉 ×〈Tr (W (1))Tr (W (1))†〉 which is valid at large N .

Similarly, (again we sum only the leading order at large N)

〈χ(1)
R′,R′′(Z,W

(2)W (1))χ
(1)
R′,R′′(Z,W

(2)W (1))†〉 =

(

4πλ

N

)h1+h2+nR′′

Nh1+h2−1nR′′fR′

dR′′

dR′

implies that χ
(1)
R′,R′′(Z,W (2)W (1)) corresponds to the state

√

(

4πλ

N

)h1+h2+nR′′

Nh1+h2−1nR′′fR′

dR′′

dR′

|R′, R′′,W (2)W (1))〉.

Finally, the correlators (again we sum only the leading order at large N)

〈χ(2)
R′,T ′′′

α
(Z,ZW (1),W (2))χ

(2)
R′,T ′′′

α
(Z,ZW (1),W (2))†〉

=

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dT ′′′

α

dR′

fR′ ,

〈χ(2)
R′,R′′′

α
(Z,ZW (1),W (2))χ

(2)
R′,R′′′

α
(Z,ZW (1),W (2))†〉

=

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dR′′′

α

dR′

fR′ ,
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〈χ(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))χ

(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))†〉

=

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dT ′′′

α

dR′

fR′ ,

〈χ(2)
R′→R′′′

α T ′′′

α
(Z,ZW (1),W (2))χ

(2)
R′→R′′′

α T ′′′

α
(Z,ZW (1),W (2))†〉

=

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dT ′′′

α

dR′

fR′

imply the correspondences

χ
(2)
R′,T ′′′

α
(Z,ZW (1),W (2))←→ (C.15)

√

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dT ′′′

α

dR′

fR′ |R′, Tα′′′ , ZW (1),W (2)〉,

χ
(2)
R′,R′′′

α
(Z,ZW (1),W (2))←→ (C.16)

√

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dR′′′

α

dR′

fR′ |R′, R′′′
α , ZW

(1),W (2)〉,

χ
(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))←→ (C.17)

√

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dT ′′′

α

dR′

fR′ |R′, T ′′′
α R

′′′
α , ZW

(1),W (2)〉

χ
(2)
R′→R′′′

α T ′′′

α
(Z,ZW (1),W (2))←→ (C.18)

√

(

4πλ

N

)h1+h2+1+nT ′′′
α

Nh1+h2−1n2
R′

dT ′′′

α

dR′

fR′ |R′, R′′′
α T

′′′
α , ZW

(1),W (2)〉

Consider the factor

n2
R′

dR′′′

α

dR′

=
(hooks)R′

(hooks)R′′′

α

,

where (hooks)R is the product of the hook lengths of Young diagram R. It is straight

forward to compute this ratio of hook lengths, which is generically of order N2 implying

that
dR′′′

α

dR′

is of order 1. Using this observation, it is equally easy to verify that
dT ′′′

α

dR′

and
dR′′

dR′

are also both O(1). Given these results, it is simple to see that the sum of operators

χ
(1)
R′,R′′(Z,W

(2))Tr (W (1)) +
1

c1 − c2
χ

(1)
R′,R′′(Z,W

(2)W (1))

+
∑

α

[

1

c1 − cα

(

1− 1

(c2 − cα)2

)

χ
(2)
R′,T ′′′

α
(Z,ZW (1),W (2))

+
1

c1 − c2
1

(c2 − cα)2
χ

(2)
R′,R′′′

α
(Z,ZW (1),W (2))

+
1

c1 − c2
1

c2 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→T ′′′

α R′′′

α
(Z,ZW (1),W (2))

+
1

c1 − cα
1

c2 − cα

√

1− 1

(c2 − cα)2
χ

(2)
R′→R′′′

α T ′′′

α
(Z,ZW (1),W (2))

]

∣

∣

∣

1

∣

∣

∣

2
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corresponds to the following sum of normalized states

√

(

4πλ

N

)h1+h2+nR′′

Nh1+h2−1n2
R′fR′

[
√

h1dR′′

nR′dR′

|R′, R′′,W (2);W (1)〉

+
1

c1 − c2

√

dR′′

nR′dR′

|R′, R′′,W (2)W (1)〉

+
∑

α





1

c1 − cα

(

1− 1

(c2 − cα)2

)

√

dT ′′′

α

dR′

|R′, T ′′′
α , ZW

(1),W (2)〉

+
1

c1 − c2
1

(c2 − cα)2

√

dR′′′

α

dR′

|R′, R′′′
α , ZW

(1),W (2)〉

+
1

c1 − c2
1

c2 − cα

√

1− 1

(c2 − cα)2

√

dT ′′′

α

dR′

|R′, T ′′′
α R

′′′
α , ZW

(1),W (2)〉

+
1

c1 − cα
1

c2 − cα

√

1− 1

(c2 − cα)2

√

dT ′′′

α

dR′

|R′, R′′′
α T

′′′
α , ZW

(1),W (2)〉







 .

Recalling that h1 = O(
√
N) and nR′ = O(N), it is clear that the first two terms are

subleading. These two terms correspond to gravitational radiation (first term) and string

joining (second term); they are the only terms that correspond to an interaction that

changes the number of open strings attached to the excited giant system. Although we

have illustrated things with an example, this conclusion is general - for all of the identities

obtained in this appendix, terms that do not correspond to two strings attached to the

giant system can be dropped in the leading large N limit.

D. State/operator map

In this section we will simply quote the six normalization factors, in table 1, that enter the

relation between the restricted Schur polynomials and the normalized Cuntz chain states

relevant for the excited two giant graviton bound state.13 The normalization factors are not

exact - we simply quote the leading large N value of these normalizations. These factors

are determined completely by the F
(1)
0 F

(2)
0 contribution in the language of [30]. The factor

fR is the product of weights of the Young diagram R. The open string word W (1) contains

a total number of h1 Higgs fields; the open string word W (2) contains a total number of h2

Higgs fields.

E. Review of the restricted Schur polynomial notation

In this appendix, we review the definition of the restricted Schur polynomial. The reader

requiring more details can consult [20, 30, 32].

13See the introduction for the restricted Schur polynomials corresponding to these states.
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State Normalization

|b0 − 1, b1, 11, 22〉
(

4πλ
N

)

2b0+b1+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

|b0 − 1, b1, 22, 11〉
(

4πλ
N

)

2b0+b1+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

|b0 − 1, b1, 12, 21〉
(

4πλ
N

)

2b0+b1+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

|b0 − 1, b1, 21, 12〉
(

4πλ
N

)

2b0+b1+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

|b0 − 2, b1 + 2, 22, 22〉
(

4πλ
N

)

2b0+b1+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

b1+3
b1+1

|b0, b1 − 2, 11, 11〉
(

4πλ
N

)

2b0+b1+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

b1−1
b1+1

Table 1: Normalization of the Cuntz states dual to a two giant system.

There is by now convincing evidence that the dual of a giant graviton is a Schur poly-

nomial. Schur polynomials are labeled by Young diagrams. Excitations of giant gravitons

can be described by attaching open strings to the giant graviton. Operators dual to excita-

tions of giant gravitons are obtained by inserting words (W (a))ji describing the open strings

(one word for each open string) into the operator describing the system of giant gravitons

χ
(k)
R,R1

(Z,W (1), . . . ,W (k)) =
1

(n−k)!
∑

σ∈Sn

Tr R1(ΓR(σ))Tr (σZ⊗n−kW (1) · · ·W (k)),(E.1)

Tr (σZ⊗n−kW (1) · · ·W (k)) =Zi1
iσ(1)

Zi2
iσ(2)
· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

. (E.2)

The representation R of the giant graviton system is a Young diagram with n boxes,

i.e. it is a representation of Sn. ΓR(σ) is the matrix representing σ in irreducible repre-

sentation R of the symmetric group Sn. The representation R1 is a Young diagram with

n − k boxes, i.e. it is a representation of Sn−k. Imagine that the k words above are all

distinct, corresponding to the case that the open strings are distinguishable. Consider an

Sn−k ⊗ (S1)
k subgroup of Sn. The representation R of Sn will subduce a (generically) re-

ducible representation of the Sn−k⊗(S1)
k subgroup. One of the irreducible representations

appearing in this subduced representation is R1. Tr R1 is an instruction to trace only over

the indices belonging to this irreducible component. If the representation R1 appears more

than once, things are more interesting. The example discussed in [20] illustrates this point

nicely. Suppose R→ R1⊕R2⊕R2 under restricting Sn to Sn−2×S1×S1. Choose a basis

so that

ΓR(σ) =







ΓR1(σ)i1j1 0 0

0 ΓR2(σ)i2j2 0

0 0 ΓR2(σ)i3j3






, ∀σ ∈ Sn−2 × S1 × S1,

ΓR(σ) =







A
(1,1)
i1j1

A
(1,2)
i1j2

A
(1,3)
i1j3

A
(2,1)
i2j1

A
(2,2)
i2j2

A
(2,3)
i2j3

A
(3,1)
i3j1

A
(3,2)
i3j2

A
(3,3)
i3j3






, σ /∈ Sn−2 × S1 × S1.

There are four suitable definitions for Tr R2(ΓR(σ)): Tr (A(2,2)), Tr (A(2,3)), Tr (A(3,2)) or

Tr (A(3,3)). Interpret the operator obtained using Tr (A(2,3)) or Tr (A(3,2)) as dual to the
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system with the open strings stretching between the giants and the operator obtained

using Tr (A(2,2)) or Tr (A(3,3)) as dual to the system with one open string on each giant. In

general, identify the “on the diagonal” blocks with states in which the two open strings are

each on a specific giant and the “off the diagonal” blocks as states in which the open strings

stretch between two giants. As a consequence of the fact that the representation R2 appears

with a multiplicity two, there is no unique way to extract two R2 representations out of

R. The specific representations obtained will depend on the details of the subgroups used

in performing the restriction. These subgroups are the set of elements of the permutation

group that leave an index invariant, σ(i) = i. Choosing the index to be the index of an

open string, we can associate the subgroups participating with specific open strings. The

subgroups are specified by dropping boxes from R, so that we can now associate boxes in

R with specific open strings. This leads to a convenient graphical notation which has been

developed in [30, 32]. There is an obvious generalization to the case that a representation

R1 appears n times after restricting to the subgroup.

If any of the strings are identical, one needs to decompose with respect to a larger

subgroup and to pick a representation for the strings which are indistinguishable. Thus, for

example, if we consider a bound state of a giant system with three identical strings attached,

we would consider an Sn−3⊗S3 subgroup of Sn. The restricted Schur polynomial would be

given by χ
(3)
R,R1

with R an irrep of Sn and R1 an irrep of Sn−3⊗S3. The S3 subgroup would

act by permuting the indices of the three identical strings; the Sn−3 subgroup would act by

permuting the indices of the Zs out of which the giant is composed. Write R1 = r1×r2 with

r1 are irrep of Sn−3 and r2 an irrep of S3. As an example, if we take R to be an irrep of S9

R = , dimR = 84

then we can have

R1 = ⊗ , dimR1 = 5, R1 = ⊗ , dimR1 = 10,

R1 = ⊗ , dimR1 = 9, R1 = ⊗ , dimR1 = 18,

R1 = ⊗ , dimR1 = 32,

or

R1 = ⊗ , dimR1 = 10.

By summing the dimensions of these representations, it is easy to see that we have indeed

listed all of the representations that are subduced by R.

The giant graviton system is dual to an operator containing a product of order N

fields; the open strings are dual to an operator containing a product of order
√
N fields.
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We have in mind the case that k is O(1), n is O(N) and the words (W (a))ji are a product

of O(
√
N) fields.

We call the operator (E.1) a restricted Schur polynomial of representation R with

representation R1 for the restriction. We end this appendix with a summary of the graphical

notation of [30], which is used heavily in this article. An operator dual to an excited giant

graviton takes the form

χ
(k)
R,R1

(Z,W (1), . . . ,W (k)) =
1

(n− k)!
∑

σ∈Sn

Tr (ΠΓR(σ))Tr (σZ⊗n−kW (1) · · ·W (k)),

where Π is a product of projection operators and/or intertwiners, used to implement the

restricted trace. Π is defined by the sequence of irreducible representations used to subduce

R1 from R, as well as the chain of subgroups to which these representations belong. Since

the row and column indices of the block that we trace over (denoted by R1 in the above

formula) need not coincide, we need to specify this data separately for both indices. The

graphical notation summarizes this information.

For the case that we have k strings, we label the words describing the open strings

1, 2, . . . , k. Denote the chain of subgroups involved in the reduction by Gk ⊂ Gk−1 ⊂ · · · ⊂
G2 ⊂ G1 ⊂ Sn. Gm is obtained by taking all elements Sn that leave the indices of the strings

W (i) with i ≤ m inert. To specify the sequence of irreducible representations employed in

subducing R1, place a pair of labels into each box, a lower label and an upper label. The

representations needed to subduce the row label of R1 are obtained by starting with R.

The second representation is obtained by dropping the box with upper label equal to 1;

the third representation is obtained from the second by dropping the box with upper label

equal to 2 and so on until the box with label k is dropped. The representations needed to

subduce the column label are obtained in exactly the same way except that instead of using

the upper label, we now use the lower label. For further details and explicit examples, we

refer the reader to [30].

F. Boundstate of three sphere giants

In this appendix, we will compute the +1 → 1 interaction for two strings attached to

a bound state of three sphere giants. This example is interesting because, firstly, it does

partially illustrate our claim that the methods we have developed apply to any bound state

of giants and secondly, in this situation, we expect an emergent U(3) gauge theory. The

three sphere giant boundstate is described by a Young diagram with three columns. When

labeling the open string endpoints we will use the labels ‘b’, ‘m’ and ‘l’ for the first column

(‘b’ for big brane), second column (‘m’ for medium brane) and third column (‘l’ for little

brane) respectively. The relevant Cuntz chain states together with their normalizations

are shown in table 2.

The labels b0, b1 and b2 again determine the momenta of the giants. The giant corre-

sponding to the first column has a momentum of b0 + b1 + b2, the giant corresponding to

the second column has a momentum of b0 + b1 and the giant corresponding to the third

column has a momentum of b0. We take b0 to be O(N) and b1, b2 to be O(1).
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State Normalization

|b0, b1 − 1, b2, bb,mm〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+b2+1)b1
(b1+b2+2)(b1+1)

|b0 − 1, b1 + 1, b2 − 1, bb, ll〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+2)b2
(b2+1)(b1+1)

|b0, b1 − 1, b2,mm, bb〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+b2+1)b1
(b1+b2+2)(b1+1)

|b0 − 1, b1, b2 + 1,mm, ll〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

|b0 − 1, b1 + 1, b2 − 1, ll, bb〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+2)b2
(b2+1)(b1+1)

|b0 − 1, b1, b2 + 1, ll,mm〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

|b0, b1, b2 − 2, bb, bb〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2

2 b0
√
fR

√
Nh1+h2−2

√

(b2−1)(b1+b2)
(b2+1)(b1+b2+2)

|b0, b1 − 2, b2 + 2,mm,mm〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b2+3)(b1−1)
(b2+1)(b1+1)

|b0 − 2, b1 + 2, b2, ll, ll〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+3)(b1+b2+4)
(b1+1)(b1+b2+2)

|b0, b1 − 1, b2, bm,mb〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+b2+1)b1
(b1+b2+2)(b1+1)

|b0, b1 − 1, b2,mb, bm〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+b2+1)b1
(b1+b2+2)(b1+1)

|b0 − 1, b1 + 1, b2 − 1, bl, lb〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+2)b2
(b2+1)(b1+1)

|b0 − 1, b1 + 1, b2 − 1, lb, bl〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b1+2)b2
(b2+1)(b1+1)

|b0 − 1, b1, b2 + 1,ml, lm〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2

2 b0
√
fR

√
Nh1+h2−2

√

(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

|b0 − 1, b1, b2 + 1, lm,ml〉
(

4πλ
N

)

3b0+2b1+b2+h1+h2−2
2 b0

√
fR

√
Nh1+h2−2

√

(b2+2)(b1+b2+3)
(b2+1)(b1+b2+2)

Table 2: Normalization of the Cuntz states dual to a three giant system.

To determine the boundary interactions, we start by rewriting the identities of ap-

pendix C for the case that we have a Young diagram with three columns. To obtain

the boundary interaction terms in the Hamiltonian, these identities are then inverted and

rewritten in terms of normalized Cuntz chain states.

The term in the Hamiltonian describing the process in which a Z hops out of the first
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J
H
E
P
0
2
(
2
0
0
8
)
0
2
9

site of string 1 is given by

H+1→1





























































|b0, b1 − 1, b2, bb,mm〉
|b0 − 1, b1 + 1, b2 − 1, bb, ll〉
|b0, b1 − 1, b2,mm, bb〉
|b0 − 1, b1, b2 + 1,mm, ll〉
|b0 − 1, b1 + 1, b2 − 1, ll, bb〉
|b0 − 1, b1, b2 + 1, ll,mm〉
|b0, b1, b2 − 2, bb, bb〉

|b0, b1 − 2, b2 + 2,mm,mm〉
|b0 − 2, b1 + 2, b2, ll, ll〉
|b0, b1 − 1, b2, bm,mb〉
|b0, b1 − 1, b2,mb, bm〉

|b0 − 1, b1 + 1, b2 − 1, bl, lb〉
|b0 − 1, b1 + 1, b2 − 1, lb, bl〉
|b0 − 1, b1, b2 + 1,ml, lm〉
|b0 − 1, b1, b2 + 1, lm,ml〉





























































= −λ
√

1− b0
N
M





























































|b0, b1 − 1, b2 + 1, bb,mm〉
|b0 − 1, b1 + 1, b2, bb, ll〉
|b0, b1, b2 − 1,mm, bb〉
|b0 − 1, b1 + 1, b2,mm, ll〉
|b0, b1, b2 − 1, ll, bb〉

|b0, b1 − 1, b2 + 1, ll,mm〉
|b0, b1, b2 − 1, bb, bb〉

|b0, b1 − 1, b2 + 1,mm,mm〉
|b0 − 1, b1 + 1, b2, ll, ll〉
|b0, b1 − 1, b2 + 1, bm,mb〉
|b0, b1, b2 − 1,mb, bm〉
|b0 − 1, b1 + 1, b2, bl, lb〉
|b0, b1, b2 − 1, lb, bl〉

|b0 − 1, b1 + 1, b2,ml, lm〉
|b0, b1 − 1, b2 + 1, lm,ml〉





























































,

where the non-zero elements of M are given by

M1 1 = −(b2)
2
1(b1 + b2)2, M3 1 = − (b1 + b2)2

(b2 + 1)2(b2 + 2)
,

M6 1 = − (b1+2)
√
b2+2

√
b1√

b2+1 (b1+1)3/2 (b1+b2+2)
,

M4 1 =
−b1−b2−3

√
b2+1 (b1+1)3/2 (b1+b2+2)

√
b1
√
b2+2

,

M8 1 = −
√
b1 − 1

√
b2 + 3

√
b1 + b2 + 3√

b2 + 1
√
b1 + b2 + 2 (b2 + 2)

√
b1
, M10 1 = − (b1 + b2)2(b2)1

(b2 + 1)(b2 + 2)
,

M11 1 = −(b1 + b2)2(b2)1
(b2 + 1)

,

M14 1 =

√
b2 + 2

√
b1 + 2

(b1 + 1)3/2√b2 + 1 (b1 + b2 + 2)
,

M15 1 =
(b1 + b2 + 3)

√
b1 + 2

(b1 + 1)3/2√b2 + 1 (b1 + b2 + 2)
√
b2 + 2

, M2 2 = −(b1 + b2)
2
2(b2)1,

M5 2 =
(b2)1

(b1 + b2 + 2)2(b1 + b2 + 3)
,

M4 2 = − b1
√
b1 + b2 + 3

√
b1 + 2

(b1 + 1)3/2 (b2 + 1)
√
b1 + b2 + 2

,

M6 2 =
−b2−2

(b2+1) (b1+1)3/2√b1+b2+2
√
b1+2

√
b1+b2+3

, M13 2 = −(b2)1(b1 + b2)2
(b1 + b2 + 2)

,

M9 2 = −
√
b1 + b2 + 4

√
b1 + 3

√
b2 + 2√

b2 + 1
√
b1 + b2 + 2

√
b1 + 2 (b1 + b2 + 3)

,
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M12 2 = − (b2)1(b1 + b2)2
(b1 + b2 + 2)(b1 + b2 + 3)

M14 2 = − (b2 + 2)
√
b1

(b1 + 1)3/2 (b2 + 1)
√
b1 + b2 + 2

√
b1 + b2 + 3

, M1 3 =
(b1)1

b2(b2 + 1)2
,

M15 2 = −
√
b1 + b2 + 3

√
b1

(b1 + 1)3/2 (b2 + 1)
√
b1 + b2 + 2

, M3 3 = −(b2)
2
1(b1)1,

M2 3 =
b1 + 2

√
b2+1 (b1+1) (b1+b2+2)3/2√b1+b2+1

√
b2
, M10 3 =

(b1)1(b2)1
(b2 + 1)

,

M5 3 = − (b1 + b2 + 3)
√
b2
√
b1 + b2 + 1

√
b2 + 1 (b1 + 1) (b1 + b2 + 2)3/2

, M11 3 =
(b1)1(b2)1
b2(b2 + 1)

,

M7 3 =

√
b2 − 1

√
b1 + b2

√
b1 + 2√

b2 + 1
√
b1 + 1b2

√
b1 + b2 + 1

,

M12 3 =

√
b2
√
b1 + b2 + 3

(b1 + b2 + 2)3/2 (b1 + 1)
√
b2 + 1

,

M13 3 = − (b1 + 2)
√
b1 + b2 + 3

(b1 + b2 + 2)3/2 (b1 + 1)
√
b2 + 1

√
b2
,

M2 4 =

√
b1 + 2 (b1 + b2 + 1)

√
b1 + b2 + 3

(b2 + 1)
√
b1 + 1 (b1 + b2 + 2)3/2

, M4 4 = −(b1)
2
1(b2)1,

M5 4 = − b2√
b1+1 (b2+1) (b1+b2+2)3/2√b1+b2+3

√
b1+2

,

M6 4 = −
√
b2 + 2

√
b2

(b1 + 1)2 (b2 + 1) (b1 + 2)
,

M9 4 = −
√
b1 + b2 + 4

√
b1 + 3

√
b2√

b2 + 1
√
b1 + 1 (b1 + 2)

√
b1 + b2 + 3

,

M12 4 = − b2
√
b1 + b2 + 1

(b1 + b2 + 2)3/2 (b2 + 1)
√
b1 + 1

√
b1 + 2

,

M13 4 =

√
b1 + 2

√
b1 + b2 + 1

(b1 + b2 + 2)3/2 (b2 + 1)
√
b1 + 1

, M14 4 = − (b2)1(b1)1
(b1 + 1)(b1 + 2)

,

M1 5 =
b1

(b2 + 1)3/2 (b1 + 1)
√
b1 + b2 + 2

√
b2
√
b1 + b2 + 1

, M15 4 = −(b2)1(b1)1
(b1 + 1)

,

M2 5 =
(b1)1

(b1 + b2 + 2)2(b1 + b2 + 1)
,

M3 5 =

√
b1 + b2 + 1 (b2 + 2)

√
b2

(b2 + 1)3/2 (b1 + 1)
√
b1 + b2 + 2

, M5 5 = −(b1)1(b1 + b2)
2
2,

M7 5 =

√
b2 − 1

√
b1 + b2

√
b1√

b1 + 1
√
b1 + b2 + 2 (b1 + b2 + 1)

√
b2
,

M10 5 = −
√
b1 + b2 + 1

√
b2 + 2

(b2 + 1)3/2 (b1 + 1)
√
b1 + b2 + 2

,
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M11 5 = − b1
√
b2 + 2

(b2 + 1)3/2 (b1 + 1)
√
b1 + b2 + 2

√
b1 + b2 + 1

, M12 5 =
(b1)1(b1 + b2)2
b1 + b2 + 2

,

M13 5 = − (b1)1(b1 + b2)2
(b1 + b2 + 2)(b1 + b2 + 1)

,

M1 6 =

√
b1b2
√
b2 + 2

√
b1 + 1 (b2 + 1)3/2 (b1 + b2 + 2)

,

M3 6 =
b1 + b2 + 1

√
b1 + 1 (b2 + 1)3/2 (b1 + b2 + 2)

√
b2 + 2

√
b1
, M4 6 =

(b1 + b2)2
b1(b1 + 1)2

,

M6 6 = −(b1)
2
1(b1 + b2)2,

M8 6 =

√
b1 − 1

√
b2 + 3

√
b1 + b2 + 1√

b1 + 1
√
b1 + b2 + 2

√
b2 + 2b1

,

M10 6 =
(b1 + b2 + 1)

√
b2

(b2 + 1)3/2√b1 + 1 (b1 + b2 + 2)
√
b1
,

M11 6 =

√
b1
√
b2

(b2 + 1)3/2√b1 + 1 (b1 + b2 + 2)
, M14 6 =

(b1)1(b1 + b2)2
b1 + 1

,

M1 7 = −
√
b1
√
b2 + 2

√
b1 + b2 + 3

(b2 + 1)2
√
b1 + 1

√
b1 + b2 + 2

√
b2
, M15 6 = −(b1)1(b1 + b2)2

b1(b1 + 1)
,

M2 7 = −
√
b1 + 2

√
b2 + 2

√
b1 + b2 + 3√

b2 + 1
√
b1 + 1 (b1 + b2 + 2)2

√
b1 + b2 + 1

,

M3 7 = −
√
b1
√
b2 + 2

√
b1 + b2 + 3

√
b2√

b1 + 1 (b2 + 1)2
√
b1 + b2 + 2

, M5 7 =−
√
b1+2

√
b2+2(b1+b2)2√

b1+1
√
b2+1(b1+b2+2)

,

M7 7 = −
√
b1 + b2 + 3

√
b2 + 2

√
b2 − 1

√
b1 + b2√

b2
√
b1 + b2 + 1

√
b2 + 1

√
b1 + b2 + 2

, M10 7 =

√
b1
√
b1 + b2 + 3

(b2+1)2
√
b1+1

√
b1+b2+2

,

M11 7 =

√
b1 (b2 + 2)

√
b1 + b2 + 3

(b2 + 1)2
√
b1 + 1

√
b1 + b2 + 2

, M12 7 =

√
b1 + 2

√
b2 + 2

(b1+b2+2)2
√
b2+1

√
b1+1

,

M13 7 =

√
b1 + 2

√
b2 + 2 (b1 + b2 + 3)

(b1 + b2 + 2)2
√
b2 + 1

√
b1 + 1

, M1 8 =

√
b1 + 2

√
b1 + b2 + 1(b2)1

(b2+1)
√
b1+1

√
b1+b2+2

,

M3 8 = −
√
b1 + 2

√
b1 + b2 + 1

√
b2

(b2 + 1)2
√
b1 + 1

√
b1 + b2 + 2

√
b2 + 2

,

M4 8 = −
√
b1+2

√
b1+b2+3

√
b2

(b1+1)2
√
b2+1

√
b1+b2+2

√
b1
,

M6 8 = −
√
b1 + 2

√
b1 + b2 + 3

√
b2
√
b1√

b2 + 1 (b1 + 1)2
√
b1 + b2 + 2

, M8 8 =−
√
b1−1

√
b2+3

√
b1+2

√
b2√

b1+1
√
b2+1

√
b1
√
b2+2

,

M10 8 = −
√
b1 + 2

√
b1 + b2 + 1b2

(b2 + 1)2
√
b1 + 1

√
b1 + b2 + 2

, M11 8 =

√
b1 + 2

√
b1 + b2 + 1

(b2+1)2
√
b1+1

√
b1+b2+2

,

M14 8 =

√
b1 + b2 + 3

√
b2

(b1 + 1)2
√
b2 + 1

√
b1 + b2 + 2

, M15 8 =
(b1+2)

√
b1+b2+3

√
b2

(b1+1)2
√
b2+1

√
b1+b2+2

,

M2 9 =

√
b1
√
b2(b1 + b2)2√

b1 + 1
√
b2 + 1 (b1 + b2 + 2)

,
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M4 9 =

√
b1
√
b1 + b2 + 1

√
b2 + 2

√
b1 + 2√

b1 + b2 + 2
√
b2 + 1 (b1 + 1)2

M5 9 = −
√
b1
√
b1+b2+1

√
b2√

b1+1
√
b2+1 (b1+b2+2)2

√
b1+b2+3

,

M6 9 = −
√
b1
√
b1 + b2 + 1

√
b2 + 2√

b2 + 1 (b1 + 1)2
√
b1 + b2 + 2

√
b1 + 2

,

M9 9 = −
√
b1+b2+4

√
b1+3

√
b1
√
b1+b2+1√

b1+1
√
b1+b2+2

√
b1+b2+3

√
b1+2

,

M12 9 = −
√
b1 (b1 + b2 + 1)

√
b2

(b1 + b2 + 2)2
√
b1 + 1

√
b2 + 1

,

M13 9 =

√
b1
√
b2

(b1 + b2 + 2)2
√
b1 + 1

√
b2 + 1

,

M14 9 = − b1
√
b1 + b2 + 1

√
b2 + 2

(b1 + 1)2
√
b2 + 1

√
b1 + b2 + 2

,

M15 9 =

√
b1 + b2 + 1

√
b2 + 2

(b1 + 1)2
√
b2 + 1

√
b1 + b2 + 2

, M3 10 = −
√
b2 + 3(b1 + b2)2

(b2 + 2)
√
b2 + 1

,

M4 10 =

√
b2 + 3

(b1 + b2 + 2)
√
b2 + 2

√
b1
√
b1 + 1

, M8 10 =

√
b1 − 1

√
b1 + b2 + 3√

b1 + b2 + 2 (b2 + 2)
√
b1
,

M10 10 = −
√
b2 + 3

√
b1 + b2 + 1

√
b1 + b2 + 3

√
b2√

b2 + 1
√
b2 + 2 (b1 + b2 + 2)

,

M15 10 = −
√
b2 + 3

√
b1 + 2√

b1 + 1 (b1 + b2 + 2)
√
b2 + 2

,

M1 11 =
(b2 − 1)

√
b1
√
b1 + 2

(b1 + 1)
√

b2
2 − 1b2

,

M2 11 =

√
b2 − 1

(b1 + 1)
√
b2
√
b1 + b2 + 1

√
b1 + b2 + 2

,

M7 11 = −
√
b1 + b2

√
b1 + 2√

b1 + 1b2
√
b1 + b2 + 1

, M11 11 =−
√
b2−1

√
b1
√
b1+2

√
b2+2√

b2+1
√
b2 (b1+1)

,

M13 11 = −
√
b2 − 1

√
b1 + b2 + 3√

b1 + b2 + 2 (b1 + 1)
√
b2
,

M5 12 = −
√
b1 + b2 + 4

√
b2 + 2

√
b2

(b2 + 1)
√
b1 + b2 + 2 (b1 + b2 + 3)

,

M6 12 = −
√
b1 + b2 + 4

(b2 + 1)
√
b1 + b2 + 3

√
b1 + 2

√
b1 + 1

, M9 12 =

√
b1 + 3

√
b2 + 2√

b2+1 (b1+b2+3)
√
b1+2

,

M12 12 = −
√
b1 + b2 + 4

√
b2 + 2

√
b2
√
b1 + b2 + 1√

b1 + b2 + 2
√
b1 + b2 + 3 (b2 + 1)

,

M14 12 = −
√
b1 + b2 + 4

√
b1√

b1 + 1 (b2 + 1)
√
b1 + b2 + 3

,

M1 13 = −
√
b1 + b2

(b1 + 1)
√
b1 + b2 + 1

√
b2
√
b2 + 1

,
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M2 13 =

√
b1 + b2

√
b1
√
b1 + 2

(b1 + 1)
√
b1 + b2 + 2 (b1 + b2 + 1)

,

M7 13 = −
√
b2 − 1

√
b1√

b1 + 1 (b1 + b2 + 1)
√
b2
, M11 13 =

√
b1 + b2

√
b2 + 2√

b2+1 (b1+1)
√
b1+b2+1

,

M13 13 = −
√
b1 + b2

√
b1
√
b1 + 2

√
b1 + b2 + 3√

b1 + b2 + 1
√
b1 + b2 + 2 (b1 + 1)

,

M5 14 =

√
b1 + 3

(b2 + 1)
√
b1 + 2

√
b1 + b2 + 3

√
b1 + b2 + 2

,

M6 14 = − (b1 + 3)
√
b2 + 2

√
b2

(b2 + 1)
√

b1
2 + 4 b1 + 3 (b1 + 2)

, M9 14 =

√
b1 + b2 + 4

√
b2√

b2+1 (b1+2)
√
b1+b2+3

,

M12 14 =

√
b1 + 3

√
b1 + b2 + 1√

b1 + b2 + 2 (b2 + 1)
√
b1 + 2

, M14 14 = −
√
b1 + 3

√
b2 + 2

√
b2
√
b1√

b1 + 1
√
b1 + 2 (b2 + 1)

,

M3 15 =

√
b1 − 1

(b1 + b2 + 2)
√
b1
√
b2 + 2

√
b2 + 1

, M4 15 =
(b1 − 1) (b1 + b2)2

√

b1
2 − 1b1

,

M8 15 = −
√
b2 + 3

√
b1 + b2 + 1√

b1 + b2 + 2b1
√
b2 + 2

, M10 15 =

√
b1 − 1

√
b2√

b2 + 1 (b1 + b2 + 2)
√
b1
,

M15 15 = −
√
b1−1

√
b1+b2+1

√
b1+b2+3

√
b1+2√

b1+1
√
b1 (b1+b2+2)

.

For large b1 and b2, we find that M = −1 with 1 the 15× 15 identity matrix. We can

also identify terms in M that behave as b−1
1

M1 =
1

b1





























































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1

0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0





























































,
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terms that behave as b−1
2

M2 =
1

b2





























































0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





























































,

and terms that behave as (b1 + b2)
−1

M3 =
1

b1 + b2





























































0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0

0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0





























































.

By looking at the Cuntz chain states, it is straight forward to see that M1 is reproduced

by ribbon diagrams in which a pair of labels undergoes a l ↔ m transition, that M2 is

reproduced by ribbon diagrams in which a pair of labels undergoes a b ↔ m transition

and that M3 is reproduced by ribbon diagrams in which a pair of labels undergoes a l↔ b

transition. This is exactly the structure expected from an emergent U(3) gauge theory.
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